
Friedrich-Alexander-Universität Erlangen-Nürnberg

Lehrstuhl für Multimediakommunikation und

Signalverarbeitung

Masterthesis

Combined-Order Hidden Markov Models
for Reverberation-Robust Speech

Recognition

Sujan Reddy, Kotha

November 2011

Advisors: Prof. Dr.-Ing. Walter Kellermann,

Roland Maas, M.Sc.





Erklärung

Ich versichere, dass ich die vorliegende Arbeit ohne fremde Hilfe und

ohne Benutzung anderer als der angegebenen Quellen angefertigt habe,

und dass die Arbeit in gleicher oder ähnlicher Form noch keiner an-
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ABSTRACT III

Abstract

Automatic Speech Recognition (ASR) Systems work very reliably if close-talking mi-

crophones are used for speech input. If the distance between speaker and microphone

increases, the recognition is often hampered by reverberation and other types of dis-

tortions. A major reason for this is that typical recognizers are based on first-order

Hidden Markov Models (HMMs) assuming that the current speech feature vector is

conditionally independent of the previous ones. Reverberation, however, has a disper-

sive effect on the feature, which significantly increases the inter-frame correlation and

thus limits the performance of such recognizers.

In this thesis, the concepts of first- and second-order HMMs are combined

to form a “combined-order“ HMM (CO-HMM), such that the CO-HMM has transi-

tion probabilities dependent only on the previous state and each state is composed

of different output probability density functions (PDFs) depending on its predecessor.

For training, initially the Baum-Welch method is employed to set up a conventional

first-order HMM. Then, the Information Combining Estimation With Non-reverberant

Data (ICEWIND) approach is used to estimate predecessor dependent output PDFs.

For recognition, the Viterbi decoder is adapted accordingly. Finally, connected-digit

recognition experiments based on the TI digit corpus are carried out for three different

recognition units, words, phonemes, and triphones, to assess the performance of the

proposed concept.
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Chapter 1

Motivation

The role of Human-to-Machine Interaction (HMI) in our everyday lifes is on the rise and

the demand for more interfaces grows continuously with the availability of increasing

powerful computational resources.Speech as a HMI is a very convenient and desirable

application for human beings, as speech is a natural way of communication between

humans.

HMI systems in an acoustic environment need to interpret and understand the

sound captured by the machine through a single or several microphones and respond

(sound production). These systems work very reliably if close-talking microphones are

used for speech input. But for a truly natural HMI, the speaker need to enjoy the

freedom of communicating via distant-talking microphone. If the distance between the

speaker and the microphone increases, the microphone not only picks the desired signal,

but also additive interferences, like background noise or undesired speaker signals,

echoes of loudspeaker signals and reverberation of the desired signal.

Automatic Speech Recognition (ASR) is often a part of acoustic HMI systems,

where the input signal has to be interpreted and understood. It is a technology that

allows a machine to identify the words a speaker speaks into the input device and

convert it to written text. Today, most practical speech recognition systems are based

on the statistical framework. Based on major advances in statistical methods, most

notably Hidden Markov Models (HMMs), sophisticated systems are developed that
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respond to fluently spoken natural language. However, these systems are very sensitive

to reverberation and their performance get degraded considerably with it.

The major reason for this is that typical recognizers are based on first-order

HMMs assuming that the current speech feature vector is conditionally independent

of the previous ones. Reverberation, however has a dispersive effect on the feature

vector, which significantly increases the inter-frame correlation and thus limits the

performance of such recognizers. Different techniques have already been investigated

in order to model the inter-frame dependency, e.g., differential features [10] and frame-

wise model adaptation [26,27].

The aim of this master thesis to implement a concept called Combined-Order

Hidden Markov Model (CO-HMM), which is a model-based approach to reverberant

robust speech recognition in distant talking scenarios. The concepts of first-order and

second-order HMMs shall be merged to form a “combined-order“ HMM. Such a CO-

HMM is to be designed so that the transition probabilities are independent of the

previous state, whereas each state is composed of different output PDFs depending on

its predecessor.

The thesis is organized as follows: In chapter 2, basics of ASR like preprocessing,

feature extraction, training and recognition, using HMMs are described in detail. In

the next chapter, reverberation and its characteristics, its effects on the performance

of ASR and model based approaches for reverberation compensation are elaborated.

In chapter 3, the concept of CO-HMM and the procedures involved in building such a

HMM are discussed in detail. chapter 4 presents the experimental setup, results and

discussions. In the final chapter, conclusions are drawn from this thesis.
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Chapter 2

Automatic Speech Recognition

Automatic speech recognition is interdisciplinary in nature. The different areas to be

investigated in this context include the process of extracting useful information from the

speech signal, the procedures for estimating the parameters of statistical models, the

relationship between sounds, words and grammar rules in a language, understanding

the relationship between the physical speech signal and the mechanisms that produce

the speech, understanding how speech is perceived by human beings, implementing

efficient algorithms in software or hardware and understanding the factors that help in

applying this task in practical situations [2].

In this chapter, the fundamentals of speech recognition algorithms that make

use of HMMs are described. In the first two sections, initial procedures in ASR,

preprocessing and feature extraction are described. Next, a brief introduction to HMMs

and then algorithms to train and recognize a HMM are described in detail. Then, the

relation between isolated and continuous speech speech recognition is explained. At the

end of this chapter, different recognition units and their advantages and disadvantages

are discussed.

Figure 2.1 shows a block diagram of a typical speech recognition system. The

stages involved in an ASR system are preprocessing, feature extraction, training an

acoustic model and finally recognition based on this trained acoustic model and a lan-

guage model. For increasing robustness against reverberation, measures can be embed-
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 decoding

pre
processing

feature
extraction

acoustic
model model

training

language

transcription

transcription

Figure 2.1: Block diagram of an ASR system

ded into the ASR system in the preprocessing, feature extraction, acoustic model and

recognition. In this thesis, the focus is on the model based reverberation compensation

techniques, which are described in section 3.5 and in chapter 4.

2.1 Preprocessing

Preprocessing involves the application of fundamental signal processing before the ex-

traction of desired features from the speech signal. In a distant talking scenario, pre-

processing includes removing additive interferences and dereverberation in the signal

and frequency domain.

Noise can cause significant changes to the characteristics of the speech signal.

If the additive noise and speech signals are statistically dependent, then there is a

modification of the spectrum and characteristics of the speech signal [3]. To enhance

the signal with additive interferences, noise reduction techniques [3] and beamforming

techniques [3] can be applied.

Dereverberation techniques like reverberation cancellation [20], reverberation

suppression [20] and beamforming can be applied in signal domain to remove the rever-

beration. Its main goal is estimation of clean-speech signal s(n) from the microphone
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signal x(n).

2.2 Feature Extraction

Extracting features from speech is a fundamental necessity of any speech recognition

system. The Goal is to classify the source files using a reliable representation that

reflects the difference between utterances. Speech is non-stationary and to approximate

the input speech signal to a quasi stationary signal, a window function is applied in the

preprocessing stage to divide speech into small segments. A feature vector is usually

computed from a window of speech signals (20...30 ms) in every short time interval

(about 10 ms). An utterance is represented as a sequence of these feature vectors.

Mel-Frequency Cepstral Coefficients (MFCCs) [5] are the most commonly used

features for human speech analysis and recognition. Since the human auditory sys-

tem does not perceive the frequency on a linear scale, researchers have developed the

Mel-scale in order to approximate the humans perception scale. The Mel-scale is a

logarithmic mapping from physical frequency to perceived frequency [6]. The MFCCs

are extracted using this frequency scale. Figure 2.2 shows the flow graph of MFCC

extraction procedure. The steps involved in extracting MFCC features are as follows:

 

|()|2

s(n)

Hamming

window
DFT

DCT log
mel

filtering

logmelspec
coefficientscoefficients

melspec

sm(k)sl(k)sc(k)

MFCCs

Figure 2.2: Block Diagram of MFCCs extraction
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1) A short-time spectrum analysis is performed with a Hamming window.

wH(m) =











(1− α)− α ∗ cos[2π/(M − 1)], 0 ≤ m ≤M − 1,

0, m = else,

where M is the window length, α = 0.46

2) A f -point Discrete Fourier Transform (DFT) for a windowed input speech signal is

applied

S(f, k) =
F−1
∑

n=0

wH(n)s(kN + n)e−j 2π
F

nf , (2.1)

where f is the index of the DFT bin, k is the frame index, N ≤ F is the frame shift.

3) The magnitude square of the filter coefficients |S(f, k)|2 is calculated to obtain

mel-spectral coefficients by applying a mel filter bank C(l, f).

sm(l, k) =
F/2
∑

f=0

C(l, f)|S(f, k)|2 (2.2)
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4) Next, logmelspec coefficients are obtained by applying the logarithm to melspec

coefficients

sl(k) = logsm(k), (2.3)

where
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sm(k) = [sm(1, k), sm(2, k), .., sm(L, k)]
T ,

T is a Matrix transpose, L is the number of mel-channels and l denotes ”logmelspec

domain”

5) Finally, Discrete Cosine Transform (DCT) is applied to the logmelspec features to

obtain MFCCs:

sc(k) = B.C .sl(k), (2.4)

C = Cil =

√

2

L
.cos(π/L.i.(l + 0.5)), (2.5)

where C is the L× L DCT matrix, B = [1I×I 0I×(L−1)] is the selection matrix I × L,

where I < L .

The first I MFCCs are used as speech features to capture the spectral envelope of the

time-frequency pattern.

In addition to static features (MFCCs), dynamic features (∆ and ∆∆) features

are added to exploit the temporal changes of short-time spectra [7]. They are the first

and the second derivatives of Short-Time Fourier Transform (STFT) based features, like

MFCCs, respectively. The derivatives are usually approximated by a simple differences,

given by

∆s(κ) = s(k + κ)− s(k − κ), (2.6)

or by linear regression calculations, given by

∆s(k) =

∑K∆
κ=1 κ.(s(k + κ)− s(k − κ))

2.
∑K

κ=1 κ
2

(2.7)

where typical values for κ=1 or 2 and K∆={ 2, 3, 4}.

2.3 Hidden Markov Models

HMMs are widely used in an ASR because of its efficient implementation of the overall

recognition system and its characteristic statistical framework. For estimating the
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parameters of the models from a finite training sets of speech data, efficient algorithms

are available and the recognition system obtained has the flexibility to change the size,

type, or architecture of the models to suite particular words or sounds.

HMMs are commonly defined as stochastic finite state machines, which produce

an observation by concatenation of two random experiments, the first one determines

the unobservable state and the second one produces the given observation based on

the chosen state [8].

Consider an example: Let N glass urns contain M colored balls in each of it.

In an experiment, T balls are chosen randomly from a randomly selected urn and the

color of the ball is noted and the ball is replaced again in the same urn. A new urn

is then selected according to the random selection process associated with the current

urn and the selection procedure of balls is repeated. This experiment generates finite

observation sequence of colors.

A simple HMM corresponding to this model can be described as each urn

corresponds to a state, the colored balls are the observations and for each color there is

an observation probability depending on which state it belongs to. A state transition

matrix has the probabilities for transition from urn (state) i to j. Figure 2.3 illustrates

above example.
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Figure 2.3: Example of a simple HMM
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Figure 2.4 shows a pictorial representation of a HMM. A HMM can be charac-

terized as follows

• It has a series of N states within the model which are responsible for representing

the target which needs to be modeled.

• M , the number of observation symbols per state. O={o1, o2....oM}

• Each of the state has its associated output probability distribution B=bj(ot),

where ot is the observation vector at time t and j is the state index, where

bj(ot) = P (ot|qt = j).

• Each pair of these states has a transition probability between them. A={aij} is

a set of transition probabilities between states, where

aij = P (qt+1 = j|qt = i).

• π = {πi} is the initial distribution

πi = P (q1 = i) ∀ i=1,...,N

For convenience, a compact notation λ = {A,B, π} is used to represent the complete

parameter set of the model.

The two fundamental assumptions in a first-order HMM are the Markov as-

sumption which states that the current state qt depends only on the previous state

q(t−1) and not on the earlier states, and the conditional independence assumption,

which states that the output vector ot for a given state qt is independent of all the

previous states and the output feature vectors. The Markov assumption and the con-

ditional independence assumption can be written as follows

The Markov assumption:

aij = p(qt+1 = j|qt = i). (2.8)
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  3  5

a11 a22 a33 a44 a55

a12 a23 a34 a45

b1(ot) b2(ot) b3(ot) b4(ot) b5(ot)

a13 a24 a35

1 2 4

Figure 2.4: Five state Hidden Markov model

The Conditional independence assumption:

P (O|q1, q2, ...., qT , λ) =
T
∏

t=1

P (ot|qt, λ). (2.9)

2.3.1 Training an HMM

The HMMs employed in practice are first-order HMMs. For convenience a first-order

HMM is considered as HMM in this chapter and as FO-HMM in the later discussions

for comparisons between different order HMMs. Training a HMM aims at finding

optimized parameters of that model to maximize P (O|λ). A standard algorithm used

to train an HMM is Baum-Welch method, which is described as follows

Baum-Welch training:

Baum-Welch training is an iterative process of estimating the parameters of the

model using the Maximum Likelihood (ML) estimation, until the optimized parameters

found by some fixed number of iterations or some termination criteria is fulfilled.

In the training procedure, an initial model is taken and utilizing the input

speech data and the associated transcription, parameters of this model are re-estimated,

thus a new model is created. The aim of the training is to find the model, say M̂ , such

that:
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M̂ = argmax
M

P (O|M), (2.10)

where O is the given observation sequence and P (O|M) is the likelihood of that se-

quence given the model. Figure 2.5 shows the flow graph of the Baum-Welch algorithm.

Initial HMM

Forward/Backward
algorithm

Update HMM parameters

converged ?
NO

YES

Estimated HMM

Figure 2.5: Baum-Welch Algorithm

The maximum likelihood estimates of mean µj and variance ˆ∑
j of a HMM can be

calculated by

µ̂j =

∑T
t=1 Lj(t)ot

∑T
t=1 Lj(t)

, (2.11)

ˆ∑

j

=

∑T
t=1 Lj(t)(ot − µj)(ot − µj)

′

∑T
t=1 Lj(t)

, (2.12)
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where Lj(t) denotes the probability of being in state j at time t. To apply equations

2.11 and 2.12 the probability of state occupation Lj(t) must be calculated. This is

done efficiently using the so-called Forward-Backward algorithm. Given a HMM, the

forward probability αj(t) is defined as the joint probability of having generated the

partial observation sequence from time 1 to time t and having arrived state j at time t

and a backward probability βj(t) is the probability of generating the partial observation

sequence from time t to time T , such that the state sequence starts from state j at time

t [1]. The forward probability can be calculated by the following recursion formula

αj(t) = [
N−1
∑

i=2

αj(t− 1).aij ]bj(ot), (2.13)

where N is the total number of states in the given HMM with 1 and N non emitting

states. Initial conditions for above recursion are

α1(1) = 1 (2.14)

αj(1) = a1jbj(o1) (2.15)

for 1 < j < N . Similarly, the backward probability can be calculated by a backward

recursion:

βi(t) =
N−1
∑

j=2

aijbj(ot+1)βj(t + 1) (2.16)

with initial condition

βi(T ) = aiN (2.17)

for 1 < i < N . Therefore, the product of these two denotes the joint probability

αj(t)βj(t) of generating the incoming observation sequence and arriving at state j at

time t.



2.3. HIDDEN MARKOV MODELS 13

αj(t) .βj(t) = P (O, qt = j|M). (2.18)

Therefore, the probability of state occupation Lj(t) can be calculated as follows

Lj(t) = P (qt = j|O,M) =
P (O, qt = j|M)

P (O|M)
=
αj(t) .βj(t)

P (O|M)
, (2.19)

Note that at any time t, all possible state sequences must merge into one of the states.

Thus the desired probability P (O|M) is simply computed by summing all the forward

and backward products as shown below

P (O|M) =
N
∑

j=1

αj(t)βj(t), (2.20)

For a HMM with mixture components, means µ̂im, covariance matrices ĉim, mixture

weights wim and transition probabilities âim are re-estimated as follows.

µ̂im =

∑T
t=1 δim(t)ot

∑T
t=1 δim(t)

(2.21)

ĉim =

∑T
t=1 δim(ot − µim)(ot − µim)

′

∑T
t=1 δim(t)

(2.22)

wim =

∑T
t=1 δim(t)

∑T
t=1 δim(t)

(2.23)

âim =

∑T
t=1 αi(t)aijbj(ot+1)βj(t+ 1)

∑T
t=1 αi(t)βi(t)

(2.24)

Where δim(t) denotes the probability of the observation sequence occupying the mth

mixture component of state i at time t and denotes the probability of the observation

sequence occupying the state i at time t. They can be expressed as follows:

δi(t) =
M
∑

m=1

δim(t) =
M
∑

m=1

1

p

N
∑

j=1

αj(t− 1)aijwimbotβi(t) (2.25)
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where M is the total number of Gaussian mixture components in state i and N is the

total number of states in the model.

2.3.2 Recognition

The task of a speech recognizer is to find the best estimate ŵ of a true word sequence w

corresponding to a certain utterance, from the respective speech feature vectors derived

from the speech signal. The word sequence w is modeled as random process W and

the sequence of observed speech vectors s(k) is modeled by a vector-valued random

process S(K) [10]. Representing all observed vectors from frame K = 1 to k = K as

S = S(1 : K), the recognition problem can be expressed as

ŵ = argmax
w

P (W = w|S = s). (2.26)

Using the Bayes theorem 2.20 can be written as

P (W = w|S = s) =
P (S = s|W = w) .P (W = w)

P (S = s)
(2.27)

Recognition problem now becomes maximizing the product of the likelihood P (S =

s|W = w) and the prior probability P (W = w) as shown below

ŵ = argmax
w

P (S = s|W = w) .P (W = w). (2.28)

Given a sequence of observation vectors, the recognizer, using the trained acoustic

model, has to identify the correct word from available set of word models. Hence,

the model which yields the maximum value of P (O|Mi) has to be determined. But

in practice, the recognition is based on the maximum likelihood state sequence to

generalize for continuous speech [1]. For a given model M , let φj(t) represent the

maximum likelihood of observing speech vectors o1 to ot and being in state j at time

t. The partial likelihood is computed recursively using the Viterbi algorithm. It is a

dynamic programming algorithm for finding the most likely sequence of hidden states

called the Viterbi path, that results in a sequence of observed events.
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Let us assume that the HMM starts in state 1 and ends in the last state N

at the final frame T of the sequence o(1:T ). The partial likelihood of observing speech

vectors o1 to ot and being in state j at time t can be expressed as

φj(t) = max
i

{φi(t− 1).aij} .bj(ot), (2.29)

ψj(t) = max
i

{φi(t− 1) .aij}, (2.30)

where initial likelihood of observing speech vector o1 and being in state 1 at time 1 is

given by

φ1(1) = 1 (2.31)

The likelihood of observing speech vector o1 and being in state j at time 1 is given by

φj(1) = a1j .bj(o1). (2.32)

for 1 < j < N . The maximum likelihood state sequence representing a model M i.e.,

P̂ (O|M) , is given by

φN(T ) = max
i
φi(t)aiN . (2.33)

This algorithm can be illustrated using a trellis diagram. For example, let us

consider the recognition process using a five state HMM with words as recognition

units, such that there are no skips between the states. The transition probability from

initial non emitting state to the first state is one and the likelihood of observing speech

vector o1 and being in the first state is one.

This algorithm can be visualized as finding the best path through a matrix,

where the vertical dimension represents the states of the HMM and the horizontal

dimension represents the frames of speech (i.e. time), as shown in Figure 2.6. Every

dot in the trellis diagram represents the Viterbi score φj(t) of the state j and the

frame t and each arc between dots correspond to the non-zero transition probability

between the respective states. From equation (2.29), we can infer that the Viterbi
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Figure 2.6: Viterbi Algorithm illustrated using Trellis diagram

scores are calculated step by step recursively by multiplying the score of the possible

predecessor states with the corresponding transition probability, selecting maximum

among all predecessors and then multiplying the output density of the current feature

vector. Hence, in the recursion finding φ5(T ) gives the final acoustic score for a given

model and the backtracking matrix stores the most likely state sequence through the

HMM.

2.4 Continuous speech recognition

Let O = o1, o2....oT be a sequence of observations, ot be the observation at time t. Then

isolated word recognition problem can the be regarded as computing

argmax
i
P (wi|O), (2.34)

where wi is the i
th vocabulary word. This probability is computed by the Bayes Rule

P (wi|O) =
P (O|wi)P (wi)

P (O)
. (2.35)

For a given set of prior probabilities P (wi), the most probable spoken word depends

only on the likelihood P (O|wi).
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Recognition of continuous speech simply involves connecting HMMs together

in sequence [1]. Each model in the sequence could be either whole a word for con-

nected speech recognition or sub-words, such as phonemes and tiedstate triphones for

HMM for ’zero’

HMM for ’one’

HMM for ’nine’

HMM for ’oh’

.

.

.

.

Start End

Figure 2.7: HMM Network for connected digit recognition

continuous speech recognition. In this case, the training data set contains continu-

ous utterances. Hence, the boundaries dividing words or sub-words are unknown. A

special training method called embedded training is used to solve the purpose. This

method uses the Baum-Welch algorithm such that all models are trained in parallel.

In recognition, the Viterbi algorithm is alternatively formulated by the Token Passing

algorithm [11].

2.5 Recognition units and types

Recognition units play an important role in a speech recognizer. These units can be

of different lengths and each choice has its own advantages and disadvantages. The

longer the unit is, the more accurately it will model the effects of context dependency,

but more training data will be required. The units decided should be consistent and

trainable. In this section, a brief description of recognition units words, phonemes,

tiedstate triphones is given.
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2.5.1 Words

Words are the basic units to be recognized. They are considered to be context-

dependent as the phonemes in a word are very likely the same in each utterance.

However, using word models as recognition units for a very large vocabulary requires

a large amount of training data, making them unusable. In the word models, each

model is divided into many states and in the recognition, the best path between these

states decides the recognized word. Figure 2.8 shows the representation of a HMM

with words.

 ...............................

aq2q2 aq3q3 aq4q4

fq2 fq3 fq4

q1 q2 q3 q4
aqN−1qN

qN
aq1q2 aq2q3 aq3q4

one

Figure 2.8: Representation of a word HMM

2.5.2 Phonemes

The phonemes are the basic sounds that form a word and the number of

phonemes in most of the languages are moderate. Therefore, the phoneme models

can be used as a recognition unit for a very large vocabulary as it is very easy to

get enough training samples for each phoneme. However, the context in which the

phoneme used is completely ignored. In a phoneme model, each phoneme is divided

into states and in recognition the best path between the states decide the recognized

phoneme and the combination of these phonemes decide the word recognized. Figure

2.9 shows the representation of a HMM with phonemes.
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aq2q2 aq3q3 aq4q4

fq2 fq3 fq4

q1 q2 q3 q4
aq4q5

qN
aq1q2 aq2q3 aq3q4

one

w ah n

Figure 2.9: Representation of a phoneme HMM

2.5.3 Tiedstate triphones

The disadvantage with the phoneme level models can be compensated by using

context-dependent phonemes called tiedstate triphones. A context dependent triphone

 

aq2q2 aq3q3 aq4q4

fq2 fq3 fq4

q1 q2 q3 q4
aq4q5

qN
aq1q2 aq2q3 aq3q4

w + ah w − ah+ n ah− n

one

Figure 2.10: Representation of a triphone HMM

model can be built, either by word-internal or cross-word models. The word-internal

model does not consider the context beyond the word borders, whereas a cross-word

triphone model, considers the context of the neighboring words at the beginning and

end of each phoneme of the current word to be recognized. In recognition, the process
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is similar to phoneme level, here, the word recognized will be a combination of the tied

state triphones. Figure 2.10 shows the representation of a HMM with triphones.
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Chapter 3

Reverberation and its effects on

ASR

In this chapter, the first few sections give an overview of reverberation, Room Impulse

response (RIR), how reverberation can be modeled with RIRs and the measurements

used for RIR and reverberation. Then, in the following sections, reverberation effects

on ASR, change in the statistical characteristics of Feature Vector Sequences (FVSs)

due to reverberation, and the model based approaches for this problem are described.

3.1 Reverberation

Reverberation is a phenomenon caused by the multiple reflections of the desired signal

within a room. In a distant- talking scenario, the gain of the microphone amplifier

has to be increased (compared to close-talking scenario) because of the longer distance

between the desired speaker and the microphone. Due to this, the microphone picks

delayed and attenuated copies of the desired signal, which are sensed as reverbera-

tion. Figure 3.1 shows a typical distant-talking scenario. The signals reaching the

microphone by various paths can be categorized into three parts:

• direct signal: The direct signal takes a direct path to the microphone. The time
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ASR
device

Figure 3.1: Distant talking scenario

delay between the source and its arrival at the microphone on the direct path

can be calculated from the sound velocity c and the distance r from source to

microphone.

• early reflections: The early reflections reach the microphone on the path of mul-

tiple reflections, approximately 50 to 100 ms after the direct signal and are rela-

tively sparse.

• late reflections: The late reflections arrive at the microphone, following one an-

other so closely that it is very hard to distinguish from one another and result in

a diffused noise field.

Signal-to-reverberation ratio (SRR) is a useful measure for assessing the level of rever-

beration in a signal, which is defined as the ratio of a signal power to the reverberation

power contained in a signal. It can be expressed as

SRR
∆
= 10log10

Psignal

Preverberation

= ε{10log10
s2

(s ∗ hr)2
} (3.1)

where s is the clean signal and hr the impulse response of the reverberation.
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3.2 Room Impulse Response

A natural approach to dereverberation, is the study of Acoustic Impulse Responses

(AIRs) as they characterize the acoustics of a given enclosure. AIR limited to acoustics

within a room are referred to as a RIR. In this thesis, the discussion is confined to RIRs.

The reverberation time T60 is defined as the time taken for the reverberant

energy to decay by 60 dB once the sound source has been abruptly switched off [20].

It is an often used measure for RIRs and depends on room dimensions and reflecting

coefficient of the surfaces. An RIR varies with the speaker, the microphones or other

objects in the room, change location [20]. With the speaker-microphone separation,

the relation between the energy of the direct-path component and the energy of the

reflected components of the RIR changes. The critical distance is defined as the distance

when the two energies, of the direct path and of the reflections are equal. Figure 3.2

shows an example of a RIR with T60 600ms.
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Figure 3.2: Room Impulse Response of a room with reverberation time T60 = 600ms

The initial short period of approximately zero amplitude is the propagation

delay of direct signal from speaker to microphone. The peak followed by this short
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period correspond to the direct signal. The early reflections are often taken as the

first 50 ms of the impulse response [20], and constitute well-defined impulses of large

magnitude relative to the smaller magnitude and diffuse nature of the late reflections.

The late reflections are considered as the tail of the impulse response. They are dis-

tributed randomly with closely spaced and decaying impulses. This tail provides the

major contribution to what is generally perceived as reverberation [22].

The reverberant data can be obtained by recording the microphone signals in

that particular environment used for the application procedure. Such a large train-

ing data can be used for the estimation of the HMM model parameters using the

Baum-Welch algorithm (see section 2.3 for details) as this data represents the sta-

tistical properties of the reverberant FVSs in the respective environments. But, the

disadvantage with this procedure is recording a large training data in each application

environment.

To reduce the effort in collecting the data, the reverberant training data can be

generated by convolving clean-speech training utterances with RIRs measured in the

environment of application [13]. But, the disadvantage with this procedure is that all

the features of the reverberant data, like the Lombard effect [19] and significant change

in the acoustic path between speaker and microphone, due to change in position of the

speaker, change in the temperature and other effects, cannot be captured.

The propagation of signal from the speaker’s lips to the microphone can be

represented by the convolution of the speech signal with the RIR as shown below [20].

x(n) = h(n) ∗ s(n) + b(n), (3.2)

where s(n) denotes desired speaker signal, h(n) the room impulse response, x(n) the

microphone signal, b(n) additive noise and n discrete time index. In the following

discussions, the additive noise term is neglected, as the main focus of this thesis is

reverberation. Therefore, the microphone signal can be represented as

x(n) = h(n) ∗ s(n), (3.3)
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Figure 3.3: Microphone signal of utterance “two, three, oh, four” in a distant-talking
scenario

3.3 Effects of Reverberation on ASR

When the speech signals received in a room by one or more microphones positioned at a

distance from the speaker, the observed microphone signals consists of a superposition

of many delayed and attenuated copies of the speech signal due to reverberation. The

delay of the superimposed copies arises due to the fact that other propagation paths are

longer than the direct-path and the additional attenuation occurs due to the frequency

dependent absorption at each reflection [20].

When the reverberation effects are severe, the characteristics of the speech sig-

nal are altered, which in turn effects the speech recognition and significantly reduces

the performance of algorithms developed without taking room effects into considera-

tion. The destructive effects are magnified as the distance between the speaker and

the microphones is increased.

Example: Fig 3.4 shows a plot of connected digit recognition experiment with increasing

reverberation time T60. For a HMM trained on clean speech, the reverberant test data
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Figure 3.4: Word accuracy with increasing T60 for a HMM trained on clean data

is used to find the performance of the recognition system. The performance of the

recognizer decreases as the reverberation effects increase.

3.4 Characteristics of Reverberation

In this section, characterization of a reverberant utterance in the time domain and

logmelspec domain are discussed.

In the time domain, the reverberant speech signal can be modeled by convolving

the clean-speech signal with RIR describing the acoustic path between speaker and

microphone [20]. Figure 3.5 shows the time-domain representation of the microphone

signal of the utterance ”four, two, seven“ in close-talking and distant-talking scenario.

Figure 3.5 (b) shows the temporal smearing of the speech signal. Comparing Figure

3.5 (a) and 3.5 (b), it is noted that the reverberation of each phoneme extends to

succeeding phoneme(s).

In STFT domain phonemes are more clearly distinguished. Figure 3.6 shows



3.4. CHARACTERISTICS OF REVERBERATION 27

0,2 0,4 0.6 0.8 1 1.2

−0,1

−0,05

0

0,05

0,1

0.2 0,4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

0.3

x
(n
)

s(
n
)

time in seconds

Figure 3.5: Time-domain signal of the utterance “four, two, seven” uttered by a female
speaker a) close-talking recording, b) distant-talking recording in room B, T60 = 700ms,
SRR = -4.0 dB loudspeaker/microphone distance 4m, fs = 20 KHz.

the representation of the close-talking and distant-talking in STFT domain. Comparing

3.6 a) and 3.6 b), it is clearly seen that the harmonic spectogram of the vowel /ao/

fills the short pause before the plosive /t/.

The logmelspec domain and ∆ coefficients representation of the utterance

”four, two, seven“ are shown in the Figure 3.7. The feature domain representation

captures only the envelope of the speech signal’s time-frequency representation. Hence,

useful representation for discriminating different phones, compared to the STFT repre-

sentation containing the unnecessary information like pitch contour and other spectral

details. Therefore, this representation is used in ASR.

Comparing 3.7 a) and 3.7 c), it is noted that the feature vectors are smeared

across time in the reverberant case. For example, the short period of silence before

plosive /t/ in ”two“ and the region of low energy during the fricative /s/ in ”seven“ are

filled with the energies from the previous frame. This shows that, in the reverberant

case, the current feature vector strongly depends on the previous feature vector. The
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Figure 3.6: STFT representation of the utterance “four, two, seven” in dB color scale
a) close-talking recording, b) distant-talking recording in room B, T60 = 700ms, SRR
= -4.0 dB loudspeaker/microphone distance 4m, fs = 20 KHz[10].

conditional independency assumption that the current feature vector is independent

of the previous feature vectors for a conventionally used FO-HMM based recognizers,

contradicts the above observation and therefore the performance of such recognizers

decreases in the reverberant condition.

Figure 3.7 b) and Figure 3.7 d) are the logmelspec domain representation of

∆ coefficients ∆sl(k) and ∆xl(k) with K∆=2. where ∆s(k) can be expressed by 2.7.

These ∆ coefficients capture the temporal changes of the logmelspec features. From

the Figure 3.7 b), the following observations can be drawn. The ∆ coefficients

• exhibit large positive values for the lower frequencies at the starting of vowels

/ao/ and /eh/.
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Figure 3.7: Logmelspec representation of the utterance “four, two, seven”,a) static
features of close-talking recording, b) delta features of close-talking recording, c) static
features of distant-talking recording with a loudspeaker/microphone distance 4 m, d)
delta features of distant-talking recording[10].

• take close to zero values during the nearly stationary voiced articulation of the

vowels.
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• assume large negative values for rapid decrease of the sound energy. For example,

at the end of the vowels and short period of silence before plosive /t/.

• assume large positive values across the entire range of frequencies, due to the

plosive burst /t/.

However, due to the smearing effect of reverberation, there are no abrupt changes in

the energy and therefore, the ∆ coefficients do not take large negative values, compared

to the clean speech values. This can be observed in the Figure 3.7 d), the magnitudes

of ∆ coefficients after the vowels /ao/,/uh/ and /eh/ in the reverberant case are lower

than the clean case.

Due to the dispersion caused by reverberation, the shapes, the means, and the

variance of the PDFs describing the reverberant features are changed in comparison

to the PDFs of the corresponding clean-speech features [10]. Furthermore, the inter-

frame correlation between reverberant feature vectors is significantly higher than that

between clean-speech feature vectors [10].

3.5 Model Based Approaches

From the discussion in section 3.4, it is clear that the reverberation has a dispersive

effect on FVSs and their statistical properties change significantly compared to clean

speech FVSs. Hence, if a reverberant utterance is tested on an acoustic model trained

on a clean speech data, there is a mismatch and to avoid that, the acoustic models have

to be adjusted to reverberation in a distant talking scenario. In this section, model-

based approaches, estimating the parameters of a HMM with reverberant training data,

exploiting the inter-frame dependency using conditional HMMs and a novel approach

for matched reverberant training of HMMs using data pairs are briefly described.
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3.5.1 Estimation of Parameters of a HMM with Reverberant

Training Data

The HMMs can be trained using reverberant data, as explained in section 3.2. The

performance of HMMs trained on artificially reverberated training data is only slightly

lower than that of HMMs trained on data recorded in the application environment [15].

Synthetically generated RIRs can be used instead of measured RIRs in generating

the training data [16], reducing the effort to record reverberant data. In each new

application environment, to avoid retraining the HMM, synthetically generated RIRs

for different reverberation parameters are used to train the HMMs in advance and the

HMM, that best suits the environment is selected [17].

3.5.2 Conditional HMMs

The conditional HMMs approach uses conditional output densities fS(k)|S(k−1)=s1,Q(k)=j(s)

instead of fS(k)|Q(k)=j(s) [10]. By using these conditional output densities on the previ-

ous frames, the conditional independency assumption can be overcome and the inter-

frame dependencies can be modeled explicitly by HMMs [10]. The Baum-Welch train-

ing and Viterbi training formulae for determining the parameters of single-Gaussian

conditional densities are derived in [18]. For Viterbi decoding, the conditionally inde-

pendent output density fS(k)|Q(k)=j(s) is replaced by conditionally dependent output

density on previous feature vector fS(k)|S(k−1)=s1,Q(k)=j(s) [18].

3.5.3 Retraining a First-Order HMM

Information Combining Estimation With Non-reverberant Data (ICEWIND) is a novel

approach, tailored particularly to training HMMs with stereo data consisting of clean

and reverberated feature vectors [9]. In this algorithm, the temporal structure of speech

is determined by hard aligning the clean-speech training data to the states of a well

trained clean-speech HMM λs (Viterbi alignment). This State Frame Alignment (SFA)
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is the optimum one that can be achieved, as the clean-speech signal is the actual source

of information providing the most accurate picture of the temporal signal structure.

The standard EM algorithm is applied to determine the parameters of the Gaussian-

mixture densities to the predetermined training data of each state. The ICEWIND

algorithm can be summarized as follows [9]:

• Step 1: Determine the SFA by hard-aligning s(1 : K) to λs:

q̂(k) = argmax
j
P (Q(k) = j|s(1 : K), λs) (3.4)

If HMMs for several different reverberation conditions with identical clean-speech

data are trained, the SFA has to be performed only once and can then be used

for all conditions. Therefore, the state transition probabilities of the clean-speech

HMM λs are simply copied to the reverberant HMM λx [9].

• Step 2: Determine the parameters of the Gaussian-mixture density for each state

j applying the standard EM algorithm to the reverberant data [9]:

a) E-step: Calculate the posterior mixture probability for each frame k and each

mixture component m:

γjm(k) = P (R(k) = m|x(k), q̂(k) = j, λx) =
wjmN (x(k)|µjm, Cjm)

∑M
m′=1wjm′N (x(k)|µjm′, Cjm′)

(3.5)

γjm =
K
∑

k=1

γjm(k) (3.6)

b) M-step: Estimate the mixture density parameters for each component m:

ŵjm =
1

K
γjm (3.7)

µ̂jm =
1

γjm

K
∑

k=1

γjmx(k) (3.8)
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Ĉjm =
1

γjm

K
∑

k=1

γjm(x(k)− µ̂jm)(x(k)− µ̂jm)
T (3.9)

where wjm, µjm, and Ĉjm are the weight, mean vector, and covariance matrix of com-

ponent m for state j, respectively, and Q(k) is a random process of state indices.

The HMM parameters are updated with the estimates from step 2 so that a

new parameter set λx is obtained, which is used for the following iteration. The steps

a) and b) are repeated until some termination condition is fulfilled [9].
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Chapter 4

Combined-Order HMM

In this chapter, first a brief introduction to Higher-Order HMMs (HO-HMMs) is given

and the concept of CO-HMMs is explained. In the next following sections, the training

and the recognition procedures are explained in detail.

4.1 Higher-Order HMM

In a FO-HMM the two fundamental assumptions as mentioned in section 2.3,

the Markov assumption, which states that the current state qt depends only on the

previous state q(t−1), and not on the earlier states and the conditional independence

assumption, which states that the output feature vector ot for a given state qt is inde-

pendent of all the previous states and the output feature vectors. Figure 4.1 shows a

FO-HMM.
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Figure 4.1: FO-HMM
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In a HO-HMM, the Markov assumption is extended to k previous states i.e., a kth

order HMM assumes that the current state qt depends on the k previous states q(t−1),

q(t−2)... q(t−k+1), similarly the conditional independence assumption extends to k pre-

vious states. The Markov assumption assumption and the conditional independence

assumption for a HO-HMM can be mathematically written as follows

ai1i2.....ikj = P (qt+1 = j|qt = i1, qt−1 = i2, ..., q(t−k+1) = ik) (4.1)

P (O|q1, q2, ...., qT , λ) =
T
∏

t=1

P (ot|qt, qt−1...q(t−k+1), λ) (4.2)

Figure 4.2 shows a second-order HMM.
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4.2 Combined-Order HMM

From section 3.5, it is noted that reverberation has a dispersive effect on FVSs and due

to this dispersive effect, the inter-frame correlation between FVSs is increased. This

observation forms the basis for this concept called CO-HMM. To capture the inter-

frame dependency and to build a reverberant robust speech recognizer, the concepts
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of first and second-order HMMs are merged to form a “combined-order” HMM (CO-

HMM).

In a CO-HMM the Markov assumption remains same as the first-order (2.8),

but the conditional independence assumption is changed such that the observation

feature vector ot is dependent on the previous state. The conditional independence

assumption of a CO-HMM can be stated as follows

P (O|q1, q2, ...., qT , λ) =
T
∏

t=1

P (ot|qt, qt−1, λ) (4.3)

where O = o1, o2, o3....., oT and λ represents the model parameters.
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Figure 4.3: CO-HMM

From Figure 4.3, it can be observed that each state of a CO-HMM is associated with

two predecessor dependent PDFs, Transition-State (TS) PDF fqi|qj and Steady-State

(SS) PDF fqi|qi. A TS PDF is defined as the output PDF of all the feature vectors

whose predecessor belongs to previous state. A SS PDF is defined as the output PDF

of all the feature vectors whose predecessor belongs to the same state.

4.3 Training a CO-HMM

Training a CO-HMM involves two main steps. First, a conventional FO-HMM is trained

by the Baum-Welch method (section 2.3.1). Second, the HMM obtained from step one

is used as input to the ICEWIND approach (section 3.5.3), to train a CO-HMM. Figure

4.4 shows the flow graph of the CO-HMM training procedure.
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Figure 4.4: Algorithm to train a CO-HMM

In the ICEWIND approach the first step to determine the SFA remains same

(refer section 3.5.3), which is shown in Figure 4.5.

However, in the second step finding the parameters of the Gaussian-mixture density

for each state j applying the standard EM algorithm to the reverberant data has to be

repeated twice. Ones for estimating TS output PDF and ones for SS output PDF.

The main difference in training a FO-HMM and CO-HMM using ICEWIND

is that the sequence of observation feature vectors are split in two depending on its

predecessor. All feature vectors with predecessor belonging to the same state are used

to estimate the SS output PDF fqi|qi. Similarly, all the feature vectors with predecessor

belonging to another state are used to estimate the TS output PDF fqi|qj. Figure 4.6

shows an example of this procedure.

This training procedure involves in a separation of the whole training set into

two. Therefore, there is a decrease in the number of training samples for estimating
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the predecessor-dependent output PDFs for each state. If the number of samples are

very less, then the estimated PDF is not accurate. One way to overcome this problem,

which is applied in this thesis, is to decide a certain number of threshold samples N

and if the number of training samples to estimate the PDF fell below this N , then all

the samples are used to estimate one PDF used as TS and SS PDF.

In estimating the predecessor dependent PDFs, at the word boundaries there

is no unique preceding state. Hence, it is assumed that for the first state, the preceding

state could be the last emitting state from all the available models. Figure 4.7 shows

the procedure at the word boundaries.

4.4 Recognition

A standard algorithm used for recognition in a FO-HMM is the Viterbi algorithm,

which finds the maximum likelihood state sequence for a given sequence of observations.

However, for a CO-HMM every state has the output probabilities depending upon its
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predecessor. Hence, this algorithm has to be adapted accordingly.

For a given model M , let φj(t) represent the maximum likelihood of observing

speech vectors o1 to ot and being in state j at time t. The partial likelihood for the

CO-HMM is computed recursively using the adapted Viterbi algorithm.

Let us assume that the HMM starts in state 1 and ends in the last state N at

the final frame T of the sequence o(1:T ). Then the partial likelihood for the CO-HMM

can be represented as follows

φj(t) = max
i

{φi(t− 1) aij bij(ot)}, (4.4)
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where the initial likelihood of observing speech vector o1 and being in state 1 at time

1 is given by

φ1(1) = 1 (4.5)

the likelihood of observing speech vector o1 and being in state j at time 1 is given by

φj(1) = a1j b1j(o1) (4.6)

for 1 < j < N . The maximum likelihood state sequence representing a model M i.e.,

P̂ (O|M) , is given by

φN(T ) = max
i
φi(t) aiN biN (oT ) (4.7)

Here, j is the current state and i represents all the previous states leading to j, bij(ot)

represents the output probability of a observation vector at time t depending on its

current and predecessor state, aij represents the transition probability from state i to

state j.

This algorithm can be explained in detail using a trellis diagram as shown in

Figure 4.8. For example, let us consider the recognition process using a five state
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Figure 4.8: Adapted Viterbi algorithm for CO-HMM illustrated using Trellis diagram

HMM with words as recognition units, such that there are no skips between the states.

The transition probability from initial non emitting state to first state is one and the

likelihood of observing speech vector o1 and being in first state is one.

From equation (4.4) the Viterbi scores are calculated step by step recursively

by multiplying the score of the possible predecessor states with the corresponding

transition probability and the output probability of the current feature vector, by

selecting the transition probability, which is maximum among all predecessors and the

maximum output probability among the predecessor dependent output probabilities.

Hence, in recursion finding φ5(T ) gives the final acoustic score for a given CO-HMM

model and backtracking matrix stores the most likely state sequence through the HMM.
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Chapter 5

Experiments

The performance of CO-HMMs, is evaluated by Connected Digit Recognition (CDR)

experiments based on TI digit corpus. The CDR task is selected so that the recognition

rate does not depend on the language model and role of the acoustic model completely

determines the performance. In this thesis, through CO-HMM, an attempt to improve

the acoustic model is proposed. Hence, this task perfectly gives the environment for

evaluating the performance of CO-HMM.

This chapter is organized as follows: The experimental setup, including the

recognition system, the acoustic environment, the description of train and test data,

different recognition units and parameters used are explained in section 5.1. In section

5.2, comparisons of different PDFs of FO-HMM and CO-HMM for different recognition

units are discussed. The experimental results for approaches FO-HMM and CO-HMM

are compared in section 5.3.

5.1 Experimental Setup

5.1.1 Baseline Recognition System

The HMM-Tool-Kit (HTK) is used for the CDR experiments. It is a software pro-

gramming, that provide tools for different stages of ASR (data preparation, training,
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recognition and analysis) in such a way that they are used together to construct and

test HMM-based recognizers.

Data Preparation Tools:

The tool HCopy is used to convert the wav file into its parametric form. The 13

MFCC features are extracted from the process, shown in Figure 2.3, by decomposing

the microphone signal into overlapping frames of length 25ms with a frame shift of

10ms by Hamming window. In this thesis, 13 MFCCs and 13 ∆ Coefficients with

Cepstral Mean Subtraction (CMS) are used. The dynamic coefficients ∆ are calculated

according to (2.7) and added to the extracted 13 MFCCs, so the length of the feature

vector is 26.

Apart from that, the tools HList, HLEd, HLStats, HQuant are used to check

contents of speech, to create and edit label files, to display statistics on label files and

to build a VQ codebook respectively.

Training Tools:

Initially, once a prototype HMM to specify the overall characteristics and topology

of the HMM is defined, the actual parameters are calculated by training tools. An

acceptable and simple strategy for choosing the initial probabilities is to make all of

the transitions out of any state equally likely [1].

Once an initial set of models has been created by HInit, HRes, if bootstrap data

(the location of sub-word boundaries have been marked) is available and HCompV, if

bootstrap data is not available, the tool HERest is used to perform embedded training

using entire training set to perform single Baum-Welch re-estimation of the whole set

of HMM phone models simultaneously [1].
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Recognition Tools:

Hvite is the recognition tool used in HTK to perform Viterbi-based speech recognition

using token passing algorithm. For the recognition a network describing the allowable

word sequences, a dictionary defining how each word is pronounced and a set of HMMs

are given as input [1].

Apart from that, HBuild, HParse, HDMan tools are used to generate word

loops, to convert higher level grammar notation to equivalent word network notation

and to generate dictionary respectively.

Analysis Tools:

In the analysis part, the performance of the recognizer is evaluated by HResults tool

by matching the recognizer output with the correct reference transcriptions. It is a

dynamic programming to align the two transcriptions and then count substitution,

deletion and insertion errors [1].

Performance Measure: Speech recognition performance is measured by word accu-

racy, given by the formula

word accuracy =
Nw −ND −NS −NI

NW

.100% (5.1)

Where NW is the total number of words in the reference transcription, NS is the

number of substitutions, ND is the number of deletions, NI is the number of insertions

compared to the reference transcription.

The Word Error Rate (WER) is defined as

WER =
ND −NS −NI

NW
.100% = 100%− word accuracy (5.2)

5.1.2 Acoustic Environment

The experiments are performed using RIRs measured in five different rooms, whose

characteristics are defined in Table 5.1.
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Table 5.1: characteristics of Application Environments

Room mmr jr1 ofc il412 lr400

T60 300ms 600ms 780ms 700ms 900ms

SRR +4 0.5 -0.5 -4 -4

Two disjoint sets of RIRs are prepared by measuring RIRs for different loudspeaker

and microphone positions. One of the sets is used for training and other for testing.

This is to create different reverberation conditions for testing and training. Figure 5.1

shows RIRs of different rooms used as application environment in this thesis.
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Figure 5.1: RIRs of different rooms with increasing T60
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5.1.3 Train and Test Data

The TI digits corpus [25] is used both for testing and training.

Train data:

A subset of the TI digits training set with 4579 connected digit utterances,

corresponding to 1.5 hours of speech, is used for training. By convolving the clean-

speech signal s(n) from the training set with RIRs randomly selected from the RIR

training set of the corresponding room according to Table 5.1, the reverberant signal

x(n) is obtained. From these signals, the stereo data s(k), x(k) are obtained by feature

extraction using HTK.

Test Data:

A subset of 513 utterances randomly selected from the TI digits test set, cor-

responding to approximately 16 minutes of speech, is used for test. To obtain the

reverberant test data, the clean data are convolved with RIRs randomly selected from

the RIR test set of the corresponding rooms. By changing the RIRs for each utterance,

the time-variance of the acoustic path between speaker and microphone is simulated.

5.1.4 Recognition Units

Word model:

A 16-state word-level HMM is used for each of the 11 digits

′one′,′ two′,′ three′,′ four′,′ five′,′ six′,′ seven′,′ eight′,′ nine′,′ zero′,′ oh′

For the first-order word-level HMM, the Baum-Welch training with 20 re-

estimation iterations are performed with the HTK tool HERest, where a split of mixture

components is performed after 10 and 15 iterations to go from 1 to 2 components and

to go from 2 to 3 components, respectively.
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Phoneme model:

A 3 state phoneme-level HMM is used for each of the 18 phonemes

′f ′,′ k′,′ n′,′ r′,′ s′,′ t′,′ v′,′w′,′ z′,′ ah′,′ ay′,′ eh′,′ ey′,′ ih′,′ iy′,′ ow′,′ th′,′ uw′

For the first-order phoneme-level HMM, the Baum-Welch training with 18 re-

estimation iterations are performed with the HTK tool HERest, where a split of mixture

components is performed after 8 and 14 iterations to go from 1 to 2 components and

to go from 2 to 3 components, respectively.

Triphone model:

A 3 state triphone-level HMM is used for each of the 33 triphones

′w + ah′,′w − ah+ n′,′ ah− n′,′ th + r′,′ th− r + iy′,′ r − iy′,′ ey + t′,′ ey − t′,′ f + ow′,

′f − ow + r′,′ ow − r′,′ ow′,′ t+ uw′,′ t− uw′,′ n+ ay′,′ n− ay + n′,′ ay − n′,′ z + iy′,

′z − iy + r′,′ iy − r + ow′,′ r − ow′,′ f + ay′,′ f − ay + v′,′ ay − v′,′ s+ ih′,′ s− ih + k′,

′ih− k + s′,′ k − s′,′ s+ eh′,′ s− eh+ v′,′ eh− v + ih′,′ v − ih + n′,′ ih− n′

For the first-order triphone-level HMM, the Baum-Welch training with 25 re-

estimation iterations are performed with the HTK tool HERest, where a split of mixture

components is performed after 15 and 20 iterations to go from 1 to 2 components and

to go from 2 to 3 components, respectively.

Additionally, a three-state silence model (sil) with a backward skip from state

three to state one and a single state short pause model (sp)is used.

For the CO-HMM, the FO-HMM trained with Baum-Welch iterations is used

as the starting point. Then ICEWIND approach is used to finally train the CO-HMM.

5.2 Differential Entropy as Sharpness Measure for

GMMs

Entropy is a measure of the uncertainty associated with a random variable,

which quantifies the expected value of the information contained in the realization
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of a specific random variable [4]. This term usually refers to the Shannon entropy.

If p denotes the probability mass function (function that gives the probability that a

discrete random variable is exactly equal to some value.) of a discrete random variable

X = {x1, ..., xn}, the entropy can be written as

H(X) = −
n
∑

i=1

p(xi) log(p(xi))dx (5.3)

The differential entropy (also referred to as continuous entropy) is a concept in

information theory that extends the idea of (Shannon) entropy, a measure of average

surprisal of a random variable, to continuous probability distributions [12]. It can be

expressed as

H(X) = −
∫

X
f(x) log(f(x))dx (5.4)

where X is a continuous random variable. H(X), f(x) are the entropy and PDF of

the random variable X . Here the discussion is confined to Gaussian Mixture Models

(GMMs). The integral of the differential entropy of a GMM can be approximated by

sampling the x-axis, i.e., numerical integration. Therefore, 5.3 can be approximated as

H(X) = −
n
∑

i=1

f(xi) log f(xi)∆x, (5.5)

where xi= xmin+ i.∆x, ∆x is the step size.

The differential entropy is referred to as entropy in the following discussions.

This entropy can be used as the sharpness measure of estimated GMMs. If the entropy

of a GMM is less, then the uncertainty associated with the random variable is also less

and this model can give a sharper estimation than the model with higher entropy.

5.3 Comparison of Statistical Properties

From section 3.4, it has been shown that reverberation has a substantial effect on

the statistical properties of FVSs. This section investigates how the proposed concept

captures these changed statistical properties of reverberant FVSs, by comparing the
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acoustic model of CO-HMM and FO-HMM (model based approach, ICEWIND accord-

ing to section 3.5.1). These two models are compared because the procedure involved
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Figure 5.2: Comparison of PDFs of FO-HMM and CO-HMM.

in training both the models is the same.

The main motive of this thesis is to capture the inter-frame correlation of

the feature vectors by CO-HMM. The TS output PDF has to capture the statistical

properties of those feature vectors that have a higher diversity reverberation, where
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as the SS output PDF has to capture the statistical properties of the feature vectors,

which have a lower diversity reverberation.

Figure 5.2 shows the PDFs (GMMs, 3-mixtures) of FO-HMM and CO-HMM for

different recognition units. The entropy associated with each GMM is calculated using

5.5. The TS output PDF of a CO-HMM has a higher entropy compared to output PDF

of FO-HMM, as the TS output PDF models the feature vectors with higher diversity

reverberation. The entropy of SS output PDF is less than that of PDF of FO-HMM,

as the SS PDF models the feature vectors with lower diversity reverberation.
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Figure 5.3: Global Entropy of the word-level HMM for different rooms

Figure 5.3, 5.4, 5.5 show, the global entropy of FO-HMM and CO-HMM for different

acoustic environments and different recognition units. In the Figures 5.3 a), 5.4 a), 5.5

a), though the entropy of TS state is more than the PDF of FO-HMM, the average

entropy of TS and SS PDF has a lower entropy than PDF of FO-HMM, which is shown

in the Figure 5.3 b), 5.4 b), 5.5 b) for word, phoneme and triphone models, respectively.

These examples illustrate that the predecessor dependent output PDFs can
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model reverberant speech more accurately than the conditionally independent output

PDF. The average lower entropy of the CO-HMM compared to FO-HMM suggests

that, the proposed model provides a sharper model when compared to the conventional

model. Thus, an increased discrimination capability resulting in lower WERs can be

expected if predecessor-dependent PDFs are used.

5.4 Experimental Results

In this section, the recognition results for different reverberant conditions and different

recognition units are displayed and compared.

Table 5.2: WER for Word Model

Room clean mmr jr1 ofc il412 lr400

First-Order % 0.45 0.98 2.21 2.91 2.62 5.08

Combined-Order % 0.21 0.78 1.89 2.5 2.26 4.88

Table 5.3: WER for Phoneme Model

Room clean mmr jr1 ofc il412 lr400

First-Order % 2.39 3.93 4.95 5.30 5.79 7.74

Combined-Order % 4.03 4.15 4.67 4.95 5.47 7.35

Table 5.4: WER for Triphone Model

Room clean mmr jr1 ofc il412 lr400

First-Order % 1.96 2.79 3.13 3.73 3.83 5.47

Combined-Order % 3.07 3 2.76 3.30 3.69 4.81

Tables 5.2, 5.3 and 5.4 show the recognition results of word, phoneme and tri-

phone models for test data (section 5.1.3) in 6 different acoustic environments (section
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5.1.2) respectively. The recognition rate is measured in WER. In the table, the results

are arranged from left to right in decreasing order of SRRs of acoustic environments.

In all the cases, it is observed that, the CO-HMM gives a better recognition

results than FO-HMM, except for clean and low reverberant (T60=300ms) conditions

of phonemes and triphones.

The improvement in recognition rate can be explained as follows:

The improvement in the recognition rate, is due to the formation of sharper

acoustic models by capturing the inter-frame correlation using predecessor dependent

output PDFs and thus increasing the discrimination capability of the acoustic model.

The decrement in recognition rate can be explained as follows:

There is a trade-off between the modeling precision and split of training data.

In low reverberant conditions like clean and mmr, the loss of PDF data predominates

the increase in modeling precision, whereas in moderate and high reverberant condi-

tions the modeling precision predominates the loss of PDF data.
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Chapter 6

Conclusions

In this thesis, a model based approach called ’CO-HMM’ to achieve reverberation-

robust speech recognition has been investigated. Reverberation has a dispersive effect

on FVSs, thereby increasing the inter-frame correlation. The conventional FO-HMMs

assume that the output probability of the current observation vector is conditionally

independent of the previous feature vectors, which is not true in reverberant conditions.

Therefore, the proposed concept, which is a combination of first-order and second-order

HMM, attempts to characterize the statistical properties of the FVSs in reverberant

conditions more closely by capturing inter-frame correlation using predecessor depen-

dent output PDFs.

This model is evaluated by comparing its statistical properties with conven-

tional FO-HMM. Entropy of a model is used as a measurement for the analysis. It has

been shown that, the average entropy of CO-HMM is less than that of FO-HMM. This

decrease in the entropy of the CO-HMM compared to conventional procedure suggests

that the models built using the CO-HMM are sharper and have the property of higher

discriminating capability.

The recognition results of word, phoneme, triphone models in different acoustic

environments are published, which reflect the characteristic statistical analysis of the

models, with few exceptions in phoneme and triphone models, which have a lower

recognition rate than the FO-HMM in low reverberant conditions. This low recognition
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rate is due to split of PDF data, which results insufficient training data to estimate

the two PDFs (TS and SS) in CO-HMM. Hence, there is a trade-off between modeling

precision and split data. The recognition results for low reverberant conditions could

most likely be improved by using more training data. In highly reverberant conditions,

however, the increase in modeling precision predominates the loss of PDF data.
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