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Zusammenfassung

Aufgrund der Störungen durc h additiv es Rausc hen und Nac hhall steigt die F ehlerrate

heutiger Sprac herk enn ungssysteme in F reisprec h umgebungen b eträc h tlic h an. K on-

v en tionelle Signalv erarb eitungsv erfahren für Mikrofongrupp en v ersuc hen, die Qual-

ität des Sprac hsignals zu v erb essern. Dieses V orgehen steigert jedo c h nic h t not w endi-

gerw eise die Erk enn ungsrate, da mo derne Sprac herk enner auf statistisc hen Mo dellen

basieren, die anhand v on Sprac hmerkmalen gesc hätzt w erden.

Ein kürzlic h v orgesc hlagenes V erfahren, LIk eliho o d MAximizing BEAMform-

ing (LIMABEAM) [1], optimiert die Filterparameter der adaptiv en Mikrofon-

grupp e derart, dass die W ahrsc heinlic hk eit der k orrekten T ranskription der gespro c h-

enen Äuÿerung maximiert wird. Dieser V orsc hlag basiert auf einem anderen Opti-

mierungsziel als gew öhnlic he V erarb eitungsmetho den und ist bis jetzt no c h nic h t

v ollständig un tersuc h t.

Die v orliegende Masterarb eit k onzen triert sic h auf die Un tersuc h ung des

LIMABEAM-Algorithm us in F reisprec h umgebungen. Der erste T eil der Arb eit b ein-

haltet theoretisc he Diskussionen üb er Sprac herk enn ung und Signalv erarb eitungsv er-

fahren für Mikrofongrupp en. Danac h wird eine Zeitb ereic hsv ersion des Algorith-

m us v orgestellt, und exp erimen telle Ergebnisse b eim Einsatz des LIMABEAM-

Algorithm us in un tersc hiedlic hen akustisc hen Umgebungen w erden diskutiert,

w ob ei das Hauptin teresse dem Nac hhall in Räumen gilt. Darüb erhinaus w erden

sp eziell en t wic k elte T estszenarien b etrac h tet, um die K on v ergenzprobleme der Op-

timierungsv erfahren zu v erstehen.
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Abstract

State-of-the-art automatic sp eec h recognition systems su�er from signi�can t degra-

dations of the recognition rates in distan t-talking en vironmen ts b ecause of the distor-

tion caused b y additiv e noise and ro om rev erb eration. Con v en tional arra y pro cessing

metho ds aim at impro ving the signal w a v eform qualit y . Ho w ev er this approac h do es

not necessarily impro v e the recognition rates as state-of-the-art sp eec h recognition

is based on the probabilistic mo dels estimated from the sp eec h features.

A recen tly prop osed approac h, LIk eliho o d MAximizing BEAMforming

(LIMABEAM) [1 ], de�nes the arra y parameter optimization as a problem of �nding

the arra y parameters whic h increase the lik eliho o d of the correct transcription of

the sp ok en utterance. This recen t prop osal is based on a di�eren t optimization goal

than con v en tional arra y pro cessing metho ds and has not y et b een fully in v estigated.

The master thesis at the hand fo cuses on in v estigation of the LIMABEAM al-

gorithm in distan t-talking en vironmen ts. The �rst part of the thesis is dev oted to

theoretical discussions ab out automatic sp eec h recognition and microphone arra y

pro cessing. Later on, a time-domain v ersion of the algorithm is in tro duced and exp er-

imen tal results obtained using the LIMABEAM algorithm in di�eren t en vironmen ts

are discussed, directing most of the atten tion to ro om rev erb eration. Moreo v er, sp e-

cially designed test scenarios are considered in order to understand the con v ergence

issues of the optimization pro cedure.
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Chapter 1

In tro duction

Sp eec h is one of the most con v enien t and natural w a ys of comm unication b et w een

h uman b eings. Dev elopmen t of robust automatic sp eec h recognition (ASR) systems

promises emplo ying this e�ectiv e comm unication metho d in acoustic man-mac hine

in terfaces. State-of-the-art ASR systems, whic h are kno wn to yield high recognition

rates in distortion-free en vironmen ts, are already used in a v ariet y of applications.

Ho w ev er, most of these systems require the use of close-talking microphones in order

to a v oid distortion of the sp eec h signals b ecause of the acoustic en vironmen t.

The necessit y to capture the signals with a close-talking microphone prev en ts

the ASR systems to b e fully exploited. In man y en vironmen ts, a close-talking mi-

crophone, mostly a headset, can not b e carried b ecause of safet y or con v enience. In-

formation desks are an example of suc h en vironmen ts, where the necessit y of w earing

a headset is not desired. In en vironmen ts lik e an op erating ro om, use of microphones

w orn close to the mouth migh t b e dangerous, as they can restrict the free mo v e-

men t of surgeons. These en vironmen ts require a seamless acoustic man-to-mac hine

in terface whic h emplo ys distan t-talking ASR systems.

Nonetheless, ASR p erformance is adv ersely a�ected b y the acoustic conditions

of distan t-talking en vironmen ts. Sp eec h recognition rates are degraded as a result of

the man y in terfering factors, including rev erb eration and additiv e noise. Moreo v er,

as the distance b et w een the sp eak er and microphone is increased, the degradation

1



CHAPTER 1. INTR ODUCTION

of the ASR p erformance is also increased. In order to deal with this phenomenon,

emplo ymen t of microphone arra ys has b een prop osed. The spatial selectivit y of the

microphone arra ys allo ws directing a sp ecial atten tion to the desired source of sp eec h,

atten uating the in terfering comp onen ts.

Arra y pro cessing and b eamforming are kno wn issues in the comm unications

w orld. Ho w ev er, un til the requiremen t of microphone arra ys whic h should op erate

in a broadband frequency range, b eamforming applications w ere usually emplo y ed

in tasks whic h require op eration in narro wband frequency ranges. Man y prop osed

narro wband b eamforming metho ds could not b e applied to the broadband micro-

phone arra ys. As a result of this phenomenon, man y sp ecial broadband b eamforming

approac hes ha v e b een prop osed for microphone arra y applications.

The use of these con v en tional b eamforming tec hniques is not v ery suitable for

ASR purp oses b ecause of t w o reasons. First, man y of these approac hes mak e the as-

sumption that the desired sp eec h signal and the in terference are uncorrelated. Ho w-

ev er, the distortion caused b y ro om rev erb eration consists of dela y ed and atten uated

copies of the desired signal whic h are highly correlated with it. As a consequence

of this fact, man y of the con v en tional arra y pro cessing metho ds su�er from sev ere

signal cancellation. Second, the goal of con v en tional broadband b eamforming tec h-

niques is to impro v e the qualit y of the microphone arra y output in terms of some

signal w a v eform criteria, mostly signal-to-noise ratio (SNR). Although some of these

metho ds can successfully ful�ll the design requiremen ts in terms of these criteria,

their con tributions to the ASR p erformance are v ery limited, as these criteria are

not strictly related to the recognition pro cedure of ASR systems whic h is to decide

the class to whic h the observ ed sp eec h feature sequences b elongs to with the highest

probabilit y . Therefore, these metho ds can not lead to signi�can t impro v emen ts in

ASR p erformance in most en vironmen ts.

A prop osal b y Mic hael Seltzer, LIkeliho o d MAximizing BEamforming

(LIMABEAM) [1 ], attempts to mo dify the goal of the adaptation of arra y parame-

ters. In the prop osed sc hema, arra y parameters optimization is not done regarding

2



CHAPTER 1. INTR ODUCTION

signal w a v eform criterion, but in order to increase the lik eliho o d of the correct

transcription, taking also the sp eec h recognition pro cedure of the ASR system in to

accoun t. The goal of maximizing the lik eliho o d is closely correlated to the ASR

p erformance. Hence this metho d is exp ected to result in b etter recognition rates

than the con v en tional b eamforming metho ds. [1] con tains a detailed description of

the algorithm and ev aluation in some di�eren t acoustic en vironmen ts. In addition

to the time-domain LIMABEAM, a frequency-domain optimization sc hema, sub-

band LIMABEAM (s-LIMABEAM) has also b een prop osed. The recognition rates

using the algorithm in di�eren t en vironmen ts indicate that the algorithm can lead

to signi�can t impro v emen ts in ASR p erformance [1].

The aim of this thesis is to implemen t and ev aluate the time-domain LIMABEAM

approac h in di�eren t acoustic conditions, with a sp ecial fo cus on di�eren t ro om re-

v erb eration c haracteristics, as rev erb eration is p erhaps the most problematic in ter-

ference in distan t-talking en vironmen ts. Unlik e other b eamforming approac hes, the

LIMABEAM algorithm do es not imp ose an y restrictions on the signal w a v eform

or on the b eampattern of the microphone arra y , hence it is hard to understand up

to what extend the optimization criterion is exploited. In this w ork, in addition to

the exp erimen ts p erformed to ev aluate the LIMABEAM algorithm in terms of the

recognition rates, some exp erimen tal setups are esp ecially considered to �gure out

the ful�llmen t of the optimization criterion.

The next t w o c hapters pro vide an in tro duction to ASR systems. In the second

c hapter, the state-of-the-art ASR systems based on hidden Mark o v mo dels (HMMs)

are brie�y describ ed. The HMM theory for ASR is in tro duced, recognition and

feature extraction pro cedures are outlined, emphasizing some p oin ts whic h are im-

p ortan t for understanding the arra y optimization pro cedure of the LIMABEAM

algorithm. Chapter 3 discusses the problems and p erformance of these systems in

rev erb eran t en vironmen ts, also brie�y explaining the additiv e noise phenomenon.

In Chapter 4, principles of microphone arra ys and b eamforming are discussed.

The spatial �ltering abilit y pro vided b y microphone arra ys is describ ed. A dditionally ,

3
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it is men tioned ho w the spatial information is exploited b y common b eamforming

metho ds.

The principles of the time-domain LIMABEAM algorithm are in tro duced in

Chapter 5. The deriv ation of the total log-lik eliho o d starting from the maxim um

a p osteriori (MAP) classi�er is describ ed and the non-linear maximization of it is

discussed according to [1]. Moreo v er, three di�eren t implemen tations of the approac h

are outlined.

The results of the exp erimen ts using the LIMABEAM approac h are discussed in

Chapter 6. This c hapter giv es a description of the ASR system, the test conditions,

results and their ev aluations. Finally , c hapter 7 concludes this w ork, summarizing

the results and discussing the p ossible future w ork.

4



Chapter 2

Automatic Sp eec h Recognition

2.1 In tro duction

In this thesis, w e try to ev aluate the LIMABEAM approac h [1 ] whic h has b een

prop osed as a b eamforming metho d for sp eec h recognition tasks in distan t-talking

en vironmen ts. As men tioned in the in tro duction, this metho d tries to in tegrate arra y

pro cessing and sp eec h recognition in order to p erform �lter optimization with resp ect

to the needs of the sp eec h recognizer. Hence, fundamen tals of sp eec h recognition

systems are explained b efore dealing with the LIMABEAM algorithm.

In this c hapter, w e b egin with the basics of automatic sp eec h recognition (ASR)

systems. Later, w e discuss ho w long sp eec h �les are pro cessed in order to ha v e a more

reasonable description for the recognition task in terms of sp eec h features, limiting

the discussion to the sp eec h features used in the framew ork of the LIMABEAM

algorithm, namely log mel sp ectra and mel-frequency cepstral co e�cien ts (MF CC).

The mo deling of sp eec h pro duction b y ASR systems is in tro duced. W e then describ e

the recognition pro cess, ho w output h yp otheses of sp ok en w ords are generated b y

ASR systems, and the mec hanism to select one output transcription out of p ossible

h yp otheses.

The discussions in this c hapter are limited to ASR systems based on Hidden

Mark o v Mo dels (HMMs), whic h are used in the framew ork of the LIMABEAM

5



CHAPTER 2. A UTOMA TIC SPEECH RECOGNITION

algorithm. More detailed information ab out HMM-based ASR systems and other

sp eec h recognition topics migh t b e found in [2 ].

2.2 F undamen tals of Automatic Sp eec h Recogni-

tion

P attern recognition is the task of assigning the input patterns to distinct classes.

The p ossible classes are mo deled in an application-dep enden t manner (dep ending

on the t yp e of data to b e pro cessed) and the goal is to estimate the output class

(output h yp othesis), to whic h the input b elongs with the highest probabilit y .

Sp eec h recognition is a pattern recognition task. The goal of an ASR system is

to decide the correct transcription for a sp eec h signal. The simplest ASR system

is the isolate d wor d r e c o gnizer , where eac h sp eec h signal consists of only one w ord.

P ossible w ords are mo deled b y the recognizer as distinct classes. When a sp eec h

signal is to b e recognized, the recognizer computes scores for eac h p ossible class and

the one with the highest score is c hosen as the output h yp othesis.

Connected w ord recognizers consider the sp eec h signal as a sequence of w ords.

Eac h p ossible w ord is mo deled as an individual class and a sp eec h signal is assigned

to a sequence of classes (w ords) with the highest score. This pro cedure requires mo d-

eling of eac h p ossible w ord in the task v o cabulary . Therefore, for large v o cabulary

tasks, sp eec h is considered as a string of smaller basic units suc h as phonemes so that

the n um b er of di�eren t patterns is reduced. The limited n um b er of distinct classes

of these smaller units in most languages mak es it p ossible to mo del eac h distinct

class with an individual mo del. The acoustic mo deling of sp eec h units with Hidden

Mark o v Mo dels is discussed in Section 2.4.

P attern classi�cation systems are not in terested in all prop erties of the input

data, but only those whic h re�ect di�erences b et w een distinct classes. Therefore,

selection of a meaningful represen tation for the input data and p ossible classes is

v ery imp ortan t, and a b etter represen tation generally impro v es the p erformance of

6



CHAPTER 2. A UTOMA TIC SPEECH RECOGNITION

the system. In sp eec h recognition systems, sp eec h data is represen ted b y parameter

v ectors ( fe atur e ve ctors ). The sp eec h signal is divided in to short segmen ts ( fr ames )

and eac h frame is con v erted in to a feature v ector, �nally represen ting the en tire signal

as a sequence of feature v ectors. The pro cess of computing feature v ectors is called

fe atur e extr action . The pro duction of sp eec h can then b e mo deled as a sto c hastic

pro cess whic h generates a sequence of feature v ectors. Section 2.3 discusses the

feature extraction pro cess.

The goal of a sp eec h recognizer is to h yp othesize the correct transcription of

the input sp eec h signal. This corresp onds to the optim um classi�er, whic h can b e

expressed as

ŵ = argmax
w 2 W

P(wjX ) (2.1)

where ŵ is the output h yp othesis, w is an y p ossible w ord sequence, W is the set

of all p ossible w ord sequences (h yp othesis) and X is the sequence of feature v ectors

computed from the input sp eec h signal. Equation 2.1 can usually not b e calculated

b y recognition systems, ho w ev er applying Ba y es rule yields

ŵ = argmax
w 2 W

P(X jw)P(w)
P(X )

: (2.2)

P(X ) do es ob viously not c hange with resp ect to a w ord sequence, w . Ignoring P(X ) ,

w e obtain the Maximum A Posteriori (MAP) classi�er as

ŵ = argmax
w 2 W

P(X jw)P(w) (2.3)

where P(X jw) is the probabilit y that the curren t feature v ector X is observ ed if the

w ord sequence w is sp ok en. This term is called ac oustic likeliho o d and is computed

using the acoustic mo del of the recognizer. P(w) is the a priori probabilit y of a

particular w ord sequence and is called language sc or e . A language mo del is in tegrated

in to the sp eec h recognizer in order to calculate the language score.

Figure 2.1 sho ws a basic o v erview of an ASR system. The mo dels of the recognizer

are created b y training with feature v ectors computed from training data and their

kno wn transcriptions. The input signals are transformed in to their feature v ectors

7
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Acoustic
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Figure 2.1: Ov erview of an ASR system. T raining is done with use of the training

data and their transcriptions. Mo dels deriv ed are then used to create h yp othesis

(output transcriptions) for input sp eec h signals.

and recognition is done with the help of the trained mo dels. Among the blo c ks of

a sp eec h recognizer, feature extraction (Section 2.3) and acoustic mo deling (Section

2.4) are the most in teresting for our purp oses.

2.3 F eature Extraction

The ob jectiv e of the feature extraction pro cess is to con v ert the input signal in to

some form of compressed parametric represen tation [3 ]. A n um b er of feature sets has

b een used in ASR systems. Here, w e shortly men tion prepro cessing of sp eec h sig-

nals and discuss the computation of the mel-frequency cepstral co e�cien ts (MF CC)

whic h are used for recognition in the LIMABEAM algorithm. Common sp eec h signal

represen tation sc hemas prop osed in literature are discussed in [4 ] and [5].

Microphones capture sound pressure w a v es propagating in the air and con v ert

them to con tin uous electrical signals. These signals should �rst b e prepro cessed

b efore the feature extraction pro cess. The �rst step is to con v ert the con tin uous-

time signal to discrete-time signals b y sampling in the temp oral domain. The signal

is sampled at certain time p oin ts with in terv als of sampling p erio d t0 . The sampling

fr e quency is de�ned as f o = 1
t0

. In this thesis, the sampling frequency is c hosen

8
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to b e 20kHz. Second, the con tin uous amplitude v alues of the recorded signal are

discretized, in order to b e able to represen t them with w ords of �nite lengths. This

step is called quantization . Most of to da ys sp eec h recognizers use w ords of 16 bits.

The last step of prepro cessing is the pr e-emphasis where the signal is con v olv ed with

a �rst-order recursiv e high-pass �lter. The goal of the pre-emphasis is to emphasize

the high-frequency forman ts whic h t ypically ha v e a reduced magnitude due to a

negativ e sp ectral tilt in the sp eec h signal, particularly v oiced sounds [3]. In this

w ork, the pre-emphasis step is not used, as it is not in tegrated in to the framew ork

of the LIMABEAM algorithm.

F eature v ectors are generally computed o v er short segmen ts ( short-time anal-

ysis ), b y exploiting the assumption that sp eec h can b e considered as short-time

stationary o v er these short in terv als. Eac h of these segmen ts are called fr ames . The

sp eec h frames are generally c hosen to b e o v erlapping. The pro cess of creating sp eec h

frames is done via windo wing i.e. m ultiplying the signal with shifted v ersions of a

sp eci�c windo w, in order to tap er the samples in eac h windo w so that discon tin uities

at windo w edges are atten uated [6]. A common windo w used for this purp ose is the

Hamming window

w[k] =

8
><

>:

0:54� 0:46cos
�

k2�
K � 1

�
for k = 0; 1; :::K � 1

0 elsewhere :
(2.4)

where K is the width of the windo w. Figure 2.2 sho ws an Hamming windo w with a

frame width of 100 samples. Throughout this w ork, w e use a Hamming windo w of 25

milliseconds (500 samples at 20kHz) with 15 milliseconds (300 samples) o v erlapping.

The next step of feature extraction is to transform eac h frame from the time-domain

in to the frequency-domain via the Discrete F ourier T ransform (DFT). This step is

usually p erformed as a F ast F ourier T ransform (FFT), whic h is an e�cien t imple-

men tation of the DFT. F or the FFT to b e e�cien t, the transform length should b e

a p o w er of t w o. F or frames of 500 samples, the transform length is c hosen to b e

512 with zero padding to the end of the frame to ha v e 512 samples. The magnitude

squared of the FFT is computed, b ecause w e are in terested in energies of frequency

9
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Figure 2.2: Hamming windo w for a frame length of 100 samples

bins as discussed b elo w.

In order to appro ximate the p erception of sound energy b y the h uman auditory

system, mel �lter-b ank analysis is p erformed o v er eac h frame. The mel �lters are

based on the mel sc ale , whic h is a logarithmic scale similar to the h uman auditory

p erception. The mel-scale is giv en b y

melf requency = 2595 log10(1 +
f

700
): (2.5)

The mel �lter-bank is implemen ted with o v erlapping triangular w eigh ting functions.

These triangular w eigh ting functions co v er equal bandwidths in the mel scale with

50% o v erlapping ( i.e. A mel �lter co v ers the frequencies b et w een the cen ter fre-

quencies of its neigh b ors.). Therefore, they represen t someho w e qual ar e as on the

mel scale, while their width in frequency-domain increases logarithmically with the

frequency . They can b e designed with equal widths in the mel scale and then b e

mapp ed in to the frequency-domain b y the in v erse of Equation 2.5. Figure 2.3 sho ws

an example of the triangular w eigh ting functions of a mel �lter-bank with 12 bands

o v er the frequency axis. In this w ork, w e use a mel �lter-bank with 24 bands.

Similar to the h uman auditory system, w e are also in terested in the energy in

10
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Figure 2.3: A mel �lter-bank with 12 bands

eac h mel band. The v ector comp osed of energies of all frequency bins in eac h mel

�lter represen ts the mel sp e ctrum . Another feature v ector set whic h is giv en b y the

natural logarithm of the mel sp ectrum is the lo g mel sp e ctrum .

Because of the o v erlapping triangular w eigh ting functions of the mel �lters, the

adjacen t comp onen ts of the mel sp ectrum v ector (also log mel sp ectrum) are m utu-

ally correlated with eac h other. With the application of the Discrete Cosine T rans-

form (DCT) on the log mel sp ectrum, the m utual correlation b et w een the adjacen t

comp onen ts is largely remo v ed. Moreo v er, truncation of the resultan t feature v ectors

after the DCT ( i.e. remo v al of the higher order co e�cien ts) allo ws b etter suppression

of the undesired pitc h information mostly represen ted b y the higher order co e�cien ts

[5 ]. These impro v ed co e�cien ts are called the Mel F r e quency Cepstr al Co e�cients

(MF CC).

Figure 2.4 demonstrates the computation of mel sp ectrum, log mel sp ectrum and

MF CC using the ab o v e pro cedure (Prepro cessing steps are not sho wn). MF CC are

the most commonly used set of features in sp eec h recognition, since they result in

impro v ed p erformance with resp ect to most other features. Man y sp eec h recognizer

systems in tegrate the �rst and second order time deriv ativ es of the co e�cien ts to

11
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Figure 2.4: Ov erview of the extraction of mel sp ectrum co e�cien ts, log mel sp ectrum

and MF CC from a sp eec h frame
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capture sp ectral c hanges and impro v e ASR p erformance.

2.4 HMM based A coustic Mo deling

Sp eec h pro duction can b e considered as a sto c hastic pro cess with some probabilit y

densities. Because ASR systems represen t sp eec h as a sequence of feature v ectors,

as explained ab o v e, the pro duction of sp eec h could b e mo deled as a sto c hastic pro-

cess, whose output is a series of feature v ectors. Hidden Markov Mo dels (HMMs)

o�er an e�cien t to ol to mo del suc h sto c hastic pro cesses [7]. In HMM based sp eec h

recognizer systems, a particular HMM is emplo y ed for eac h particular sp eec h unit

(w ord, phoneme etc.).

2.4.1 Hidden Mark o v Mo dels for Sp eec h Recognition

HMMs whic h are used in ASR systems can b e c haracterized b y the follo wing pa-

rameters:

1. N , numb er of states in the mo del. Eac h individual state is denoted as sj ; j =

1; 2; :::; N , and the state at time t as qt .

2. bsi (x) , state output pr ob ability density . x denotes a p ossible output v ector and

bsi (x) is the probabilit y to observ e the feature v ector x at state i . The out-

put probabilit y of eac h state is mo deled with an asso ciated m ulti-dimensional

con tin uous probabilit y densit y . Simple probabilit y densities ( e.g. Gaussian,

Laplacian) could b e used for this purp ose. Ho w ev er, these simple probabil-

it y densities are most of the time not able to mo del the complex distribution

of feature v ectors e�cien tly . Therefore, the output probabilities are generally

mo deled as mixtures. Most of the mo dern ASR systems emplo y mixtures of

Gaussian densities for mo deling state output probabilities.

13
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The probabilit y densit y of an n -dimensional Gaussian is giv en b y

N (x; � ; � ) =
1

p
(2� )n j� j

exp(�
1
2

(x � � )T � � 1(x � � ) (2.6)

where n is the length of the feature v ector, � is the v ector of mean v alues

of length n and � is the co v ariance matrix of size n � n . The features are

generally assumed to b e m utually statistically indep enden t, whic h allo ws a

compact represen tation of the co v ariance matrix. This assumption leads to

zero cross-correlation v alues b et w een features. Hence all non-diagonal en tries

of the co v ariance matrix are n ull and it can b e represen ted b y a v ector of the

diagonal en tries. In practice, most ASR systems emplo y this assumption to

ha v e diagonal co v ariance matrices.

The output probabilit y densit y with a mixture of M Gaussians can no w b e

written as

bsi (x) =
MX

m=1

csi mN (x; � si m ; � si m ) (2.7)

where csi m , � si m and � si m are the w eigh t, mean v alue v ector and the co v ariance

matrix of the m th mixture and i th state, resp ectiv ely . The parameter set of

this mixture is B = f csi m ; � si m ; � si mg. The w eigh ts of mixtures should ful�ll

the sto c hastic constrain ts

csi m � 0; 1 � i � N; 1 � m � M (2.8)

MX

m=1

csi m = 1; 1 � i � N: (2.9)

Figure 2.5 sho ws an example of a mixture of three one-dimensional Gaussian

densities.

3. A = f � si sj g, state tr ansition pr ob ability matrix . A is called the transition ma-

trix. � si sj is the probabilit y of transition to state j at time t + 1 , giv en that

14
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Figure 2.5: A mixture of three one-dimensional Gaussian densities

state i is reac hed at time t . They should satis�es sto c hastic constrain ts [7 ]

� si sj � 0; 1 � i � N; 1 � j � N (2.10)

NX

j =1

� si sj = 1; i = 1; 2; :::N: (2.11)

An HMM whic h ob eys the ab o v e explanation has the parameter set

� = ( N; A ; B ) (2.12)

where B is the complete parameter set for all Gaussian mixtures . The n um b er of

states, N , is a deterministic parameter, whic h should b e de�ned explicitly . Therefore,

suc h an HMM has t w o sto c hastic parameters, transition and output probabilities.

In other w ords, suc h an HMM is a t w o-fold sto c hastic pro cess, whic h is de�ned b y

the statistical parameter set

� = ( A ; B ) (2.13)

Figure 2.6 sho ws a t ypical example of HMMs whic h are used in sp eec h recogni-

tion. This is a left-to-righ t HMM with 6 states. The p ossible transitions are sho wn
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Figure 2.6: Example of a left-to-righ t HMM with 6 states. P ossible transitions from

the presen t state are to the presen t state or to its righ t neigh b or.

with arro ws and asso ciated transition probabilities, � si sj . bsi (x) , the output densit y

of state i , is sho wn a with double arro w.

2.4.2 Generation of F eature V ector Sequences b y HMMs

The HMM in Figure 2.6 can no w b e used for mo deling the generation of a sequence

of sp eec h feature v ectors as follo ws:

� W e alw a ys en ter the mo del at s1 . ( q0 = s1 ). s1 is non-emitting , i.e. no output

is generated at this state. The only transition allo w ed from s1 is to its righ t

neigh b or, s2 with � s1s2 = 1 . Hence, the next state is s2 ( q1 = s2 ).

� A t an y state qt , t >0, except the �nal state, a feature v ector x t is generated

with resp ect to the output probabilit y densit y at state qt and a transition to

a new state, qt+1 , is p erformed according to the transition probabilities. The

p ossible transitions are to the curren t state or to the next state at the righ t.

� Generation of feature v ectors is �nished when the �nal state, s6 is reac hed. s6

has neither output (non-emitting state) nor transition probabilities ( absorbing

state , no further transitions are allo w ed). If the �nal state is reac hed at time
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T , ( qT = s6 ), the feature v ector sequence X of length T � 1 has b een generated

where

X = x1; x2; :::; xT � 1 (2.14)

Con tin uous sp eec h recognizers consider sp eec h as a string of its basic units, as

men tioned in Section 2.2. These strings of units can also b e easily mo deled b y HMMs.

Giv en the HMMs corresp onding to all basic elemen ts, an y string can b e generated

b y concatenated HMMs. This concatenation can b e seen as merging the �nal state

of an HMM with the initial state of an another HMM, obtaining one non-emitting

state whic h allo ws transitions from one HMM to the other.

2.4.3 Computation of the A coustic Lik eliho o d

The acoustic mo del is used to compute the acoustic lik eliho o d, P(X jw) (Section

2.2). W e no w deriv e the acoustic lik eliho o d in terms of the statistical parameters

of HMMs. The discussion is limited to isolated w ord recognition, where w e are

in terested in �nding the probabilit y that an HMM pro duces a giv en sequence X =

x1; x2; :::; xT � 1 . As explained ab o v e, this feature sequence can b e pro duced b y an y

state sequence q = q0; q1; :::qT of length T +1 . W e denote the set of all p ossible state

sequences of length T + 1 as Q. Using the c hain rule, the acoustic probabilit y can

b e written as

P(X jw) =
X

q2 Q

P(X ; qjw) =
X

q2 Q

P(X jq)P(qjw): (2.15)

The term P(X jq) is the probabilit y that the observ ed feature v ector X is generated

b y the giv en state sequence q . It can b e computed using the state output probabilit y

distributions as follo ws

P(X jq) =
T � 1Y

t=1

bqt (x t ) (2.16)

The second term in the righ t hand-side of Equation 2.15, P(qjw) , represen ts the

probabilit y of a particular state sequence giv en an HMM mo deling the w ord w and

17



CHAPTER 2. A UTOMA TIC SPEECH RECOGNITION

can b e calculated as

P(qjw) =
T � 1Y

t=1

� qt qt +1 : (2.17)

Equation 2.15 can b e rewritten b y substituting these t w o probabilities in Equations

2.16 and 2.17 in to Equation 2.15

P(X jw) =
X

q2 Q

 
T � 1Y

t=1

� qt qt +1 bqt (x t )

!

: (2.18)

W e no w substitute Equation 2.18 in to the MAP classi�er equation, Equation 2.3,

to express it in terms of statistical mo del v ariables as

ŵ = argmax
w

(

P(w)
X

q2 Q

 
T � 1Y

t=1

� w
qt qt +1

bw
qt

(x t )

!)

: (2.19)

where the sup erscript w denotes the statistical parameters of the HMM

w
whic h mo d-

els w ord w . This equation can easily b e expanded for con tin uous sp eec h recognition,

b y concatenating HMMs and maximizing o v er a string of basic sp eec h units.

2.4.4 Three Imp ortan t Issues of the HMMs in ASR Systems

In [7], Rabiner discusses three basic problems ab out the HMMs used in ASR systems

in detail. The solutions to these problems are imp ortan t to understand the basics of

training and recognition pro cedures in HMM-based ASR systems. Here, w e brie�y

men tion them.

The �rst problem is to �nd an e�cien t w a y to compute P(X jw) , the probabilit y

of observing the feature sequence X giv en the HMM

w
. The computation of this

probabilit y according to its de�nition in Equation 2.18 has a high computational

complexit y . An e�cien t w a y to solv e the problem is to use the F orwar d-Backwar d

Pr o c e dur e as explained in [7].

More imp ortan t for the motiv ation of this thesis is the second problem, ho w

to �nd an optim um state sequence q giv en a feature v ector sequence X and a

mo del HMM

w
. Sev eral p ossible optimalit y criteria are p ossible for the state sequence.
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The simplest criterion w ould b e to �nd the sequence of individual states whose

output probabilit y densities mo del the individual frames the b est ( individual ly most

lik ely [7 ]). Ho w ev er, this criterion, in whic h eac h frame and eac h state is considered

individually , migh t violate the transition rules, as there migh t b e no direct connection

b et w een t w o most likely adjacen t states. This problem ma y b e a v oided if w e consider

sequences of p ossible state sets instead of individual states. Ho w ev er, the widely

accepted criterion is to �nd the single b est state sequence [7]

q̂ = argmax
q2 Q

P(qjw): (2.20)

The optim um state sequence with resp ect to this criterion can b e found b y the

Viterbi algorithm [8 ], a dynamic programming metho d. In practice, ASR systems

do not ev aluate the MAP classi�er o v er the p ossible set of all state sequences as in

Equation 2.19 b ecause of computational complexit y . Instead, the Viterbi algorithm

is incorp orated to �nd the optim um state sequence and MAP classi�er is estimated

as

ŵ = argmax
w

(

P(w) max
q2 Q

 
T � 1Y

t=1

� w
qt qt +1

bw
qt

(x t )

!)

: (2.21)

The last problem is the training problem, i.e. adjusting the mo del parameter

set � w = ( A w ; B w) to maximize P(X jw) . There is no optimal w a y of estimating

mo del parameters, ho w ev er, iterativ e pro cedures lik e the Baum-W elc h metho d can

b e used to c ho ose the mo del parameters whic h lo cally maximize P(X jw) [7]. Lik e

most pattern recognition systems, ASR systems also require a large set of training

utterances for robust p erformance. Generally the �rst step of training is to mak e a

rough guess of the statistical mo del parameters. Then the Baum-W elc h algorithm

(or one of other iterativ e metho ds) is used to pro cess eac h training example and re-

estimate the parameters. This re-estimation pro cess generally is rep eated a n um b er

of times.
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Chapter 3

ASR in Rev erb eran t En vironmen ts

3.1 In tro duction

In the last c hapter, w e discussed the fundamen tals of ASR systems based on Hidden

Mark o v Mo dels (HMMs). These systems emplo y HMMs to mo del the pro duction

of sp eec h. The sto c hastic parameters of HMMs, state output densities and tran-

sition probabilities are estimated b y pro cessing sp eec h utterances from a training

database. These mo dels are then used to transcrib e other sp eec h utterances. Ob vi-

ously , the sto c hastic parameters of HMMs dep end on the prop erties of the training

data. In other w ords, they represen t prop erties of the en vironmen t where the train-

ing data is recorded. Using these ASR systems to transcrib e sp eec h signals recorded

in other en vironmen ts causes robustness problems in ASR. In general, as the mis-

matc h b et w een test and training conditions increases, the p erformance of the sp eec h

recognizer b ecomes w orse.

Rev erb eration and additiv e noise are imp ortan t factors whic h create a mismatc h

b et w een the test and training data. Man y other factors lik e recording noise, c han-

nel noise, sp eak er v ariabilit y , trac king errors migh t also decrease the p erformance

of ASR systems. Principally , this problem could b e solv ed b y using an individual

training set whic h exactly represen ts the test conditions. Ho w ev er, this solution is

ob viously impractical as it requires a di�eren t training session and a sp eci�c training
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set for eac h en vironmen t [3 ]. T o solv e the problems caused b y sp eak er v ariations,

the training data is usually recorded from v arious sp eak ers who represen t most of

the p ossible v ariations of the language. These migh t include sp eak ers from di�eren t

age groups, sex, regions, ethnical origins etc. As the sto c hastic parameters of HMMs

are estimated from the whole training set, c ho osing a v ariet y of sp eak ers for training

decreases sp eak er dep endency of the ASR system.

In this c hapter, w e discuss the e�ects of distan t-talking en vironmen ts on the ASR

p erformance. The in terference in suc h en vironmen ts can b e classi�ed in to t w o, addi-

tive noise and r o om r everb er ation . Belo w, w e �rst describ e b oth of these in terfering

factors and discuss their e�ects on the recognizer p erformance, dev oting most of the

discussion to rev erb eration. In fact, b ecause most of the c hapter is ab out e�ects of

rev erb eration, the title w as c hosen to b e ASR in R everb er ant Envir onments .

3.2 A dditiv e Noise

The in terfering comp onen ts from undesired sources in the en vironmen t are referred

to as additiv e noise. The sound comp onen ts arriving at the microphone from these

sources are generally uncorrelated with the desired signal. Therefore, the recorded

signal can simply b e mo deled as the summation of uncorrelated signals from the

desired and undesired sources. Bac kground noise, in terfering sp eak ers and recording

noise are among the examples of additiv e noise sources.

The e�ects of additiv e noise sources o v er the ASR p erformance are related to the

distance of the desired source to the microphone. Because of the deca ying amplitude

of sound pressure w a v es with the propagated distance in the air, the energy of the

recorded signal decreases as the distance b et w een the source and the microphone

increases. As a result of deca ying energy , the signal-to-noise ratio (SNR) of the

recorded signal also decreases with increasing distance, whic h increases the relativ e

amoun t of distortion added to the recorded signal.
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3.3 Rev erb eration

The second t yp e of distortion is caused b y the ec ho es of the desired signal. The sound

pressure w a v es, generated b y a sound source, do not tra v el along a sp eci�c direction,

but in all directions. In most of the distan t-talking situations, there is a straigh t line

connecting the source to the microphone ( dir e ct p ath ) along whic h sound pressure

w a v es can directly reac h the microphone. The sound w a v e comp onen ts tra v eling in

other directions arriv e at v arious surfaces and are re�ected b y them. The amoun t of

the sound energy re�ected or absorb ed dep ends on the prop erties of these surfaces.

After a n um b er of re�ections, these sound w a v e comp onen ts migh t also reac h the

microphone as dela y ed and atten uated v ersions of the desired signal ( e cho es ) b ecause

of longer propagation times in the air and absorption of the re�ecting surfaces. This

phenomenon is kno wn as r o om r everb er ation . Belo w, w e giv e an o v erview of ro om

rev erb eration. More detailed discussions can b e found in [9].

Figure 3.1 sho ws the propagation of direct sound and ec ho es from the source to

the microphone. Only three ec hoic comp onen ts (blue) are plotted in the �gure for

simplicit y . F or simplicit y , let us assume that these are the only p ossible ec ho es in

this en vironmen t. The digital microphone signal x[k] is then giv en b y

x[k] = � dss[k � � ds] +
3X

i =1

� i s[t � � i ]: (3.1)

where s[k] denotes the digital signal from the source recorded b y a close-talk mi-

crophone, � ds and � ds are the propagation dela y and deca y of the direct sound

comp onen t, � i and � i are the propagation dela y and deca y of the ec ho es.

A closer lo ok at the Equation 3.1 sho ws that the recorded microphone signal x[k]

can b e represen ted as the discr ete-time c onvolution of the source signal s[k] with a

Finite-Impulse-Resp onse (FIR) �lter. Although rev erb eration is a more complicated

phenomenon in real situations, it can still b e e�cien tly mo deled b y con v olution

with a linear FIR �lter [1]. The impulse resp onse of this FIR �lter is called r o om

impulse r esp onse (RIR). The length of the RIR dep ends on the propagation dela ys

and deca ys of the ec ho es. The propagation dela ys and hence the RIRs can b e v ery
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Direct Path

Echoes

Figure 3.1: Propagation from a sound source to the microphone in rev erb eran t en-

vironmen ts

long in man y en vironmen ts. With the in tro duction of the RIR, the rev erb eration is

expressed b y

x[k] = s[k] � hRIR [k] =
L RIRX

l=1

hRIR [l ]s[k � l ] (3.2)

where hRIR [k] is the RIR and LRIR is its length. Because ro om rev erb eration can b e

mo deled as a con v olution with a RIR, this phenomenon is sometimes also referred

as c onvolutional noise in literature.

The signal-to-r everb er ation r atio , SRR, is de�ned as the ratio of the energy of

the direct sound (along the direct path) to the energy of the ec ho es. Similar to

the SNR, SRR also decreases with increasing distance b et w een the source and the

microphone.

An imp ortan t c haracteristic of rev erb eran t en vironmen ts is the r everb er ation

time , T60 . In a rev erb eran t en vironmen t, energies of the ec ho es, and hence of the

RIR, decrease exp onen tially o v er time. The time in terv al whic h is necessary for a

deca y of 60dB is called the rev erb eration time. Rev erb eration time dep ends on the

propagation dela ys of the ec ho es, and th us, on the lengths of the paths along whic h

the ec ho es tra v el, whic h is related to the size of the enclosure. They can v ary b et w een
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a few h undred milliseconds and a few seconds dep ending on the size of the enclo-

sure. Although the rev erb eration time is also dep enden t on frequency , w e emplo y a

broadband assumption whic h is su�cien t for this w ork.

Figures 3.2 and 3.3 sho w measured RIRs of t w o di�eren t ro oms. The RIR in

Figure 3.2 w as measured in a ro om at the Univ ersit y of ILMENA U from a sp eak er

distance of 4.12 meters. W e refer to this RIR as ILMENA U. The second one in Figure

3.3 w as measured in a m ultimedia ro om at the Univ ersit y of Erlangen-Nurem b erg

from a distance of 2 meters and is called MMR in this w ork. Ob viously the rev er-

b eration is more sev ere in case of ILMENA U. In fact, it has a rev erb eration time of

700 miliseconds, whic h is m uc h larger than the 350 milliseconds rev erb eration time

of MMR. The SRR of the ILMENA U en vironmen t is ab out -4.9 dB, while the MMR

en vironmen t has an SRR ab out 3.9 dB.

3.4 E�ects of Rev erb eration on Sp eec h Signals and

ASR P erformance

Figure 3.4 sho ws the e�ects of the rev erb eration on the digit utterance '1369o76'

1

.

Figure 3.4(a) sho ws the sp ectrogram of the clean sp eec h signal

2

. Figures 3.4(c) and

3.4(e) are the sp ectrograms of the utterance after it has b een con v olv ed with the

t w o RIRs describ ed ab o v e, ILMENA U and MMR. Figures 3.4(b), 3.4(d) and 3.4(f )

sho w the log mel sp ectral co e�cien ts of the corresp onding signals. These �gures w ere

obtained using a frame length of 500 samples with an o v erlapping of 300 samples.

The corresp onding FFT length is 512 and sampling frequency is 20kHz.

The disp ersiv e e�ects of rev erb eration are clearly seen on the �gures. F requency

comp onen ts are somewhat sme ar e d o v er time. Silence in terv als b et w een digits, the

gaps whic h are completely visible on the clean sp eec h, are �lled with energy on the

1

Eac h digit denotes a w ord in the utterance, while 'o' denotes an alternativ e pron unciation of

zero, 'oh'

2

Recorded b y a close-talk microphone
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Figure 3.2: The ro om impulse resp onse of the ro om ILMENA U. Rev erb eration time

is 700 msec. Only the �rst 250 msec. is sho wn for visibilit y .
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Figure 3.3: The ro om impulse resp onse of the ro om MMR. Rev erb eration time is

350 msec. Only the �rst 250 msec. is sho wn for visibilit y .

25



CHAPTER 3. ASR IN REVERBERANT ENVIR ONMENTS

Time (sec)

(a) Clean Sp eec h

Lo
g-

m
el

 S
pe

ct
ra

l C
oe

ffi
ci

en
ts

Frame
50 100 150 200 250 300

5

10

15

20

(b) Clean Sp eec h

Time (sec)

(c) ILMENA U, T60 = 700 msec

Frame

Lo
g-

m
el

 S
pe

ct
ra

l C
oe

ffi
ci

en
ts

50 100 150 200 250 300

5

10

15

20

(d) ILMENA U, T60 = 700 msec

Time (sec)

(e) MMR, T60 = 350 msec

Frame

Lo
g-

m
el

 S
pe

ct
ra

l C
oe

ffi
ci

en
ts

50 100 150 200 250 300

5

10

15

20
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Figure 3.4: Sp ectrograms and log-mel sp ectra of the utterance '1369o76' (a,b) clean

sp eec h (c,d) in ILMENA U en vironmen t (e,f ) in MMR en vironmen t.
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T est Setup Rev erb eration Time W ord A ccuracy(%)

Clean sp eec h - 99.37

MMR 350 msec 89.68

ILMENA U 700 msec 59.37

T able 3.1: ASR p erformance in di�eren t rev erb eran t en vironmen ts

other plots. Comparison of the t w o rev erb eran t en vironmen ts leads to the fact that

the rev erb eration in case of ILMENA U is m uc h more disp ersiv e than MMR as a

result of the higher rev erb eration time and lo w er SRR.

The e�ects of rev erb eration on sp eec h w a v eform and feature v ectors can b e un-

dersto o d b y considering the frame length and the m uc h longer rev erb eration time.

In the clean sp eec h case, energy of a frame is only dep enden t on the samples of that

particular frame whic h has a length of 25 milliseconds. Ho w ev er, in a rev erb eran t

en vironmen t, b ecause the rev erb eration time is longer than the frame length, energy

of a frame do es not only dep end on that corresp onding frame of the clean sp eec h,

but also on samples of previous frames. This sme aring e�ect lasts m uc h longer with

long rev erb eration times, resulting in more distortion of the signal.

The signal w a v eform and the feature v ectors whic h are computed from it are

seriously a�ected b y ro om rev erb eration. The sp eec h signals whic h are used to train

the HMMs are usually recorded with close-talk microphones (non-rev erb eran t, clean

sp eec h) or in other acoustic en vironmen ts. The mismatc h b et w een the test and

training data degrades the ASR p erformance. T able 3.1 sho ws the results of the

exp erimen ts in rev erb eran t en vironmen ts. These exp erimen ts w ere p erformed using a

con tin uous digit recognizer trained with clean sp eec h utterances. The sp eec h features

w ere computed to b e mel frequency cepstral co e�cien ts (MF CC) and their �rst

order deriv ativ es. The state output distributions of HMMs w ere mo deled with single

Gaussians. No additional sp eec h recognition comp ensation tec hnique w as applied.

This recognizer, in fact, is the one whic h w as used for the exp erimen ts with the
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Figure 3.5: ASR p erformance with resp ect to the rev erb eration time

LIMABEAM algorithm (see Chapter 6 for details.). The recognition results are

giv en in terms of w ord accuracy . The �rst task w as clean sp eec h utterances. As a

result of the similarit y b et w een training and test data, ASR p erformance is nearly

p erfect for this task. Later on, rev erb eration w as in tro duced in to the test data b y

con v olving the clean sp eec h utterances with the RIRs of the ILMENA U and MMR

en vironmen ts. ASR p erformance in rev erb eran t setups is clearly b elo w the non-

rev erb eran t (clean) case. Degradation of the w ord accuracy is m uc h more sev ere in

the ILMENA U en vironmen t than in the MMR en vironmen t in agreemen t with the

longer rev erb eration and lo w er SRR.

Figure 3.5 demonstrates the ASR p erformance with resp ect to rev erb eration

time. F or this exp erimen t, the ILMENA U impulse resp onse w as m ultiplied with an

exp onen tially deca ying function in order to c hange the rev erb eration time. As the

rev erb eration time increases, the in terference in the recorded signal b ecomes more

sev ere and recognition rate decreases dramatically .

As a consequence to the robustness problem of ASR in distan t-talking en viron-

men ts, man y approac hes ha v e b een prop osed. An o v erview of most of them migh t

b e found in [10]. One of the prop osed solutions is to use an arra y of microphones
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instead of one single microphone. Microphone arra y pro cessing metho ds can then b e

applied to the recorded c hannels. The ob jectiv e of con v en tional microphone arra y

pro cessing metho ds is to increase the qualit y of the sp eec h signal w a v eform. Ho w-

ev er, this ob jectiv e is not directly related to the ob jectiv e of the sp eec h recognizer,

whic h attempts to decide the correct class for the input data with the use of some

probabilistic mo dels. Microphone arra y pro cessing is discussed in the next c hapter.

F eature comp ensation tec hniques aim at constructing robust feature sets to in-

crease recognition p erformance [3 ]. Cepstral mean normalization (CMN) [11] tec h-

nique computes the mean v alues of the cepstral co e�cien ts and subtracts them from

the input v ectors. The sp ectrum of the sp eec h transmitted through a c hannel is the

m ultiplication of the sp eec h sp ectrum and the c hannel transfer function. Ob viously

this e�ect is transformed to an addition in the logarithmic domain and cepstral mean

subtraction is v ery e�ectiv e to remo v e the e�ects of di�eren t transmission c hannels

[6 ].

Mo del adaptation tec hniques attempt to adapt the parameters of the HMMs

to the acoustic conditions of the test en vironmen t. Data recorded in the test en-

vironmen t is used for adaptation of the mo dels [3 ]. Ho w ev er, these tec hniques are

generally time-consuming and impractical as they require extra adaptation steps in

di�eren t en vironmen ts.

29



Chapter 4

Microphone Arra y Pro cessing

4.1 In tro duction

As sho wn in the previous c hapter, the corruption caused b y rev erb eration and addi-

tiv e noise has adv erse e�ects on sp eec h recognition in distan t-talking en vironmen ts.

Using arra ys of microphones instead of a single microphone is a w ell-kno wn metho d

to reduce signal distortions. In a distan t-talking en vironmen t, the origins of in ter-

fering sources are generally spatially separate from the origin of the desired signal.

Microphone arra ys can exploit this spatial separation b y enabling spatial �ltering

to select the desired source.

Arra y pro cessing refers to the join t pro cessing of signals captured b y arra ys of

sensors [1]. Arra y pro cessing has originally b een used for pro cessing narro w band

signals. Application of microphone arra y pro cessing to broadband sp eec h signals has

b een follo w ed b y recen t demands of distan t-talking en vironmen ts and man y new er

metho ds ha v e b een suggested to enhance broadband sp eec h signals recorded b y an

arra y of microphones. A b eamformer is a pro cessor used in conjunction with an

arra y of sensors to pro vide a v ersatile form of spatial �ltering [12 ]. In other w ords,

b eamforming can b e understo o d as signal pro cessing to steer the lo ok direction of

the arra y to the desired direction, in order to select the desired source and eliminate

the in terfering signals.
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The size of the arra y in terms of its op erating w a v elength is an imp ortan t mea-

sure of arra y p erformance. Considering an arra y with �xed length and �xed n um b er

of elemen ts, a narro w main b eam can b e obtained for high frequency signals (small

w a v elength). In con trast, for lo w frequency signals, with large w a v elengths, the same

arra y app ears to b e small and the main b eam b ecomes larger. When suc h a b eam-

former is used for broadband sp eec h signals, the in terfering signals, coming from

undesired directions, are not totally remo v ed, but lo w-pass �ltered [13]. Therefore,

b eamformers for narro w band signals are not v ery suitable for broadband sp eec h

signals. Man y b eamforming metho ds ha v e b een prop osed for sp eec h acquisition.

Discussions ab out man y of these microphone arra y pro cessing and b eamforming

metho ds can b e found in [10].

In this c hapter, w e brie�y discuss microphone arra y pro cessing, men tioning some

of its ma jor applications in distan t-talking en vironmen ts. Principles of microphone

arra y pro cessing and common b eamforming metho ds are presen ted while their ad-

v an tages and disadv an tages for sp eec h recognition are also discussed.

4.2 Principle of Microphone Arra ys

As indicated in the previous section, the idea b ehind using an arra y of sensors is to

exploit spatial separation b et w een the desired and in terfering sources. This principle

mak es use of the propagation dela y of sound comp onen ts from eac h of the sources

to eac h arra y elemen t. As a result of the spatial separation of desired and in terfering

sources (F or the time b eing, ro om rev erb eration can safely b e mo deled b y spatially

separate sources, assuming that the ec ho es arriv e at the microphone arra y from

di�eren t angles of incidence than the direct sp eec h.), microphone-source pairs ha v e

di�eren t propagation dela ys. This information can b e used to amplify the signal

from the desired direction and atten uate others.

Let us �rst consider one source and a linear microphone arra y with m elemen ts

where the arra y output is the summation of the signals receiv ed b y microphones. If
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the sound w a v es tra v eling from the source to the microphone arra y ha v e the same

propagation dela y for all arra y elemen ts, the sound w a v es arriving at the arra y (and

receiv ed signals) ha v e no phase di�erence (in-phase). Ho w ev er, when the propagation

dela ys are not the same, arriving sound w a v es ha v e phase di�erences (out-of-phase).

No w, w e assume t w o sources. Let the �rst of them, the desired source, ha v e the

same propagation dela y to all microphones in the arra y , while the other one, the

in terfering source, has di�eren t dela y v alues for eac h microphone. The comp onen ts

arriving at the arra y from the desired source are in-phase while comp onen ts from

the in terfering one are out-of-phase. The summation of the receiv ed signals ampli�es

the in-phase comp onen t, atten uating the out-of-phase ones. Therefore, the desired

source is enhanced [1].

This example ob viously requires a desired source whic h is equidistan t to all arra y

elemen ts if the propagation dela ys are to b e same. Although this situation can clearly

b e ac hiev ed with t w o microphones, it is not feasible with arra ys ha ving more than t w o

elemen ts. Ho w ev er, the far-�eld assumption allo ws us to generalize this assumption

to all linear arra ys. A ccording to the far-�eld assumption, if the sound sources are

lo cated far enough a w a y from the arra y , the w a v efron ts arriving at the arra y can

b e mo deled as plane w a v es, instead of spherical w a v es coming from closer sources

[13 ]. Assuming a far-�eld source placed at the direction with angle � to the arra y

normal, the extra propagation dela y � prop b et w een arriv al times of the signal at t w o

microphones can b e calculated b y

� prop =
dsin(� )

c
(4.1)

where d is the distance b et w een t w o microphones and c is the sp eed of sound (See

Figure 4.1).

With resp ect to Equation 4.1, the extra propagation dela y � prop for a far-�eld

source dep ends on the distance d and the angle � . � prop v anishes regardless of the

distance d when the angle � is zero. (Setting d to zero w ould b e meaningless, while

this w ould mean placing the microphones at the same p osition.). No w, let us again

consider a linear arra y of M microphones, where the arra y output is the sum of the
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q

d

q

dsin(  )

Figure 4.1: Extra propagation distance of a plane sound w a v e from a far �eld source

b et w een t w o microphones with distance d

signals captured b y the microphones. There is no extra propagation dela y b et w een

the microphones when there is a far-�eld source placed in the direction of the ar-

ra y normal ( � = 0 ). The signals receiv ed from this source are in-phase and they

are ampli�ed, while signal comp onen ts from the sources whic h are placed at other

directions are atten uated. The arra y is capable of �ltering the space and selecting a

direction to capture signals. This selected spatial direction is called lo ok dir e ction .

4.3 Beamforming

In the last section, it w as sho wn that summing the signals receiv ed b y a linear micro-

phone arra y ampli�es the signals from the direction of the arra y normal. Ho w ev er,

the acoustic en vironmen t in a distan t-talking scenario is generally quite complex and

the gain obtained from suc h a simple structure is limited. Bene�ts of the spatial �lter-

ing pro vided b y microphone arra ys can b e impro v ed b y applying more sophisticated

pro cessing tec hniques to steer the lo ok direction and con trol the arra y resp onse.

The pro cess of steering the lo ok direction of an arra y is called b e amforming . The

b e amp attern or dir e ctivity p attern of a b eamformer is giv en b y the magnitude square

of its frequency resp onse (also called b e amformer r esp onse ), whic h is a function of

b oth frequency and p osition. In the calculation of b eampatterns, far-�eld sources

are assumed and p osition is replaced b y incidence angle. Beamforming algorithms

ma y b e classi�ed in three groups, whic h are presen ted in the next three subsections.
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4.3.1 Dela y-and-Sum Beamformer

Dela y-and-sum b eamformer (DSB) is the oldest and simplest arra y pro cessing al-

gorithm [14]. Signals receiv ed b y the microphones in the arra y are time aligned b y

applying dela ys b efore summation. The time dela ys are adjusted to comp ensate for

the propagation dela ys of signals from a certain source. The output of a DSB with

M microphones for a source x[n] is giv en b y [1 ]

y[n] =
MX

m=1

� mxm [n � � m ]; (4.2)

where � m and � m are the w eigh t and the dela y for the signal from microphone

m , resp ectiv ely . The w eigh ts are usually set to 1/M to ha v e unit output p o w er,

although there are other w eigh t selection metho ds. The calculation of required time

dela ys is called time-delay estimation (TDE) . One of the common TDE metho ds is

using the crosscorrelation of the microphone c hannels to estimate time dela ys. More

information ab out di�eren t TDE metho ds can b e found in [10].

Using Equation 4.1 and the far-�eld assumption, the signal receiv ed b y the mi-

crophone m, xm [n; � ], arriving from an angle of � can b e written as

xm [n; � ] = x[n � � prop ] = x
�
n �

dsin(� )
c

�
: (4.3)

No w w e substitute Equation 4.1 in to Equation 4.2, calculate the impulse resp onse

using x[n] = � [n] and tak e the discrete F ourier transform of the impulse resp onse

to obtain the b eamformer resp onse of the DSB. This b eamformer resp onse can b e

written as

H (!; � ) =
MX

m=1

� me� j! ( dsin ( ! )
c + � m ) : (4.4)

The b eampattern of DSB can no w b e calculated b y taking the square magnitude

of the b eamformer resp onse. Figure 4.2 sho ws the b eampattern for a DSB with a

linear arra y of six microphones, whic h are placed with 4.2 cm in ter-elemen t distances.

In Figure 4.3 the same b eampattern is plotted o v er 4 o cta v e frequency range. The

microphone arra y is lo cated along the -90

�
- 90

�
axis. The �gures clearly sho w that
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Figure 4.2: Beampattern of a 6-elemen t linear arra y with 4.2 cm in ter-elemen t spac-

ing o v er frequency and arriv al angle for a sampling frequency of 20kHz.
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Figure 4.3: Beampattern of a 6-elemen t linear arra y with 4.2 cm in ter-elemen t spac-

ing o v er a four o cta v e frequency range for a sampling frequency of 20kHz.
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the spatial selectivit y of the DSB is frequency dep enden t. A t lo w frequencies the

width of the main b eam is larger than at higher frequencies. The reason for this

phenomenon is the large w a v elength for lo w frequencies as men tioned in Section

4.1. Because of the large b eam width at lo w frequencies the in terfering signals are

not completely atten uated, but someho w lo w-pass �ltered. Spatial aliasing at high

frequencies is also ob vious in Figure 4.2, where the sidelob es b ecome v ery large for

the frequencies higher than 7kHz. This is b ecause of the lo w spatial sampling rate

and can b e prev en ted b y follo wing the spatial sampling theorem whic h can b e seen

as a spatial analogue to the temp oral sampling theorem [1]. The spatial sampling

theorem states that for � min b eing the minim um w a v elength of in terest and d the

in ter-elemen t distance, the equalit y d < � min =2 should de ful�lled [14]. As a result

of spatial aliasing, high frequency comp onen ts from some directions can not b e

atten uated.

The problems describ ed ab o v e state that the DSB resp onse is ob viously v ery

dep enden t on the arra y geometry and source p ositions. Ho w ev er, this metho d is

preferred in man y hands-free sp eec h recognition tasks b ecause of its simplicit y (see

[15 ], [16]).

4.3.2 Filter-and-Sum Beamformer

Filter-and-sum b eamformer(FSB) replaces the single w eigh ts of DSB with �lters.

Eac h microphone c hannel is con v olv ed with an asso ciated �lter b efore b eing summed.

The output resp onse of a FSB is giv en b y

y[n] =
MX

m=1

PX

p=1

hm [p]xm [n � p � � m ] (4.5)

where hm [p] is the pth tap of the �lter asso ciated with the m th microphone [1].

More ab out FSB design metho ds can b e found in [10]. In [13 ], constan t direc-

tivit y b eamforming, whic h aims at obtaining a constan t spatial resp onse o v er the

whole frequency range, is discussed. Ho w ev er, constan t b eam width at lo w frequencies

requires large microphone arra ys, whic h are impractical in most geometries.
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FSB is a �xed b eamforming metho d, where the �lter taps are considered to

b e constan t. Ho w ev er, the acoustic conditions in distan t-talking en vironmen ts are

usually dynamic. Motion of the source migh t c hange the desired lo ok direction.

In terfering sources ma y mo v e, b e added or remo v ed. Ro om rev erb eration can also

c hange with resp ect to the motion of the furniture or p eople. Fixed b eamforming

metho ds are not capable of adapting to the dynamic acoustic en vironmen ts, and

therefore their gain in hands-free recognition tasks is limited.

4.3.3 A daptiv e Beamforming

Because of the dynamic acoustic conditions in distan t-talking en vironmen ts, adap-

tiv e b eamforming algorithms whic h adjust �lter taps and dela y v alues to the new

conditions are necessary . Man y adaptiv e b eamforming approac hes ha v e b een sug-

gested in the literature.

Linearly constrained b eamformers try to optimally suppress the p oin t-lik e noise

sources outside the lo ok direction. The F rost algorithm iterativ ely adapts the w eigh ts

of a broadband sensor arra y to minimize noise p o w er at the arra y output while

main taining a c hosen frequency resp onse in the lo ok direction [17 ]. The generalized

sidelob e canceller (GSC) prop osed b y Gri�ths and Jim, considers the problem as

remo ving the sidelob es from a �xed b eamformer [18 ]. This arc hitecture emplo ys

an adaptiv e unit in addition to the �xed b eamformer. The signals from the lo ok

direction of the �xed b eamformer are remo v ed from the input signal of the adaptiv e

unit b y a blo cking matrix . A daptation is then p erformed in order to remo v e an y

signal comp onen ts whic h are common to b oth of the b eamformers.

Sup er-directiv e b eamforming tec hniques ha v e also b een suggested for eliminating

undesired signals. [19] discusses sup er-directiv e b eamformers, whic h can b e deriv ed

b y applying minim um v ariance distortionless resp onse principle to theoretically w ell-

de�ned noise �elds.

Man y adaptiv e b eamforming algorithms assume that the desired and in terfering

signals are uncorrelated. Ho w ev er, this assumption leads to the problem of signal
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cancellation in rev erb eran t en vironmen ts, where the in terfering signals are the re-

�ections of the desired signal. This results in a degradation in the output signal

qualit y and p o or recognition p erformance [1 , 3]. A dapting the �lters only in silence

in terv als could reduce this degradation to some exten t. Hosh uy ama has managed to

reduce the signal cancellation caused b y mistrac king [20]. Herb ordt has prop osed a

frequency-domain robust GSC in [21 ], where the trac king b eha vior and a v erage in-

terference rejection are impro v ed b y con trolling the adaptation in discrete frequency

bins. Ho w ev er, signal cancellation and the mismatc h b et w een the adaptation and

recognition criteria are still problems for these adaptiv e b eamforming applications

to b e e�cien tly emplo y ed in sp eec h recognition tasks in rev erb eran t en vironmen ts.
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Chapter 5

Lik eliho o d Maximizing Beamforming

5.1 In tro duction

In distan t-talking en vironmen ts, distortion of sp eec h signals causes signi�can t degra-

dations in ASR p erformance. As describ ed in Chapter 2, there are man y factors

whic h distort the captured signals, including not only ro om rev erb eration and ad-

ditiv e noise but also placemen t errors of microphones, recording and c hannel noise,

sp eak er v ariabilit y and man y other p ossible phenomena. Con v en tional microphone

arra y pro cessing metho ds attempt to enhance the sp eec h signals according to op-

tim um signal criteria, whic h include increasing the SNR, minimizing the sidelob e

energies or signal error and similar signal w a v eform enhancemen t goals. These meth-

o ds can yield reliable impro v emen ts in terms of the signal w a v eform qualit y under

man y conditions. Ho w ev er, ASR systems mo del sp eec h signals as sequences of feature

v ectors. Therefore, robust ASR systems do not require optimal signal w a v eform en-

hancemen t, but impro v emen t of the feature v ectors represen ting the sp eec h signals.

Enhancing the signal w a v eform do es not necessarily result in more robust feature

v ector sequences and hence, do es not necessarily impro v e sp eec h recognition results.

In [1 ], M. Seltzer prop oses the LIkeliho o d MAximizing BEAMforming

(LIMABEAM) approac h as an alternativ e arra y pro cessing metho d for sp eec h recog-

nition purp oses. The idea underlying this algorithm is to consider microphone arra y
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Figure 5.1: Ov erview of sp eec h recognition with LIMABEAM

pro cessing and sp eec h recognition not as t w o di�eren t problems, but as a com bined

one. Sp eec h recognizers p erform recognition according to the maxim um a p osteriori

(MAP) classi�er, (Equation 2.3), whic h aims to �nd the class with the highest prob-

abilit y to pro duce the observ ed feature v ector sequence. Hence, in order to increase

the recognition p erformance, the lik eliho o d of the correct class m ust b e maximized,

or at least increased relativ e to other (incorrect) classes for a giv en input [1]. In

order to maximize the lik eliho o d of the correct class, the represen tation of sp eec h

signals on the recognizer side and the sp eec h pro duction mo del of the recognizer

should b e in tegrated in to the arra y pro cessing sc hema, whic h means com bining the

recognition and arra y pro cessing blo c ks. No w, the problem is �nding the set of ar-

ra y parameters whic h maximize the lik eliho o d of the correct h yp othesis [1]. Figure

5.1 sho ws the in tegration of required information from the recognizer side in to the

microphone arra y pro cessing blo c k.

In this c hapter, w e explain the LIMABEAM algorithm in order to pro vide the

theoretical basis for its ev aluation in the next c hapter. W e �rst discuss ho w the

lik eliho o d of the correct transcription could b e maximized. Later on, three di�eren t

implemen tations of the algorithm are describ ed.
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5.2 Lik eliho o d Maximizing Beamforming

The LIMABEAM algorithm attempts to �nd the set of optimal arra y parameters

whic h maximize the probabilit y of the correct class to pro duce the observ ed feature

sequence. Once the optimal parameters are decided, microphone arra y pro cessing is

done with a �lter-and-sum b eamformer (FSB) as describ ed in Section 4.3.2. First,

time-dela y comp ensation (TDC) is p erformed and eac h microphone input is con-

v olv ed with the asso ciated �lter. Finally signals from all microphone c hannels are

summed. The sp eec h signal is con v erted to a sequence of features and recognition is

p erformed according to Chapter 2.

The optimization pro cedure of the arra y parameters to maximize the lik eliho o d of

the correct class requires in tegration of information ab out the lik eliho o d computation

of the recognizer in to the arra y pro cessing unit. Therefore, the relation b et w een the

lik eliho o d computation and the arra y parameters should b e exploited. Next, w e sho w

ho w this relation can b e written explicitly in order to optimize the arra y parameters.

5.2.1 Maximizing the Lik eliho o d

Sp eec h recognizers w ork according to the principle of the MAP classi�cation whic h

is a sp ecial form of the optim um Ba y esian classi�er (see Section 2.2). W e no w w an t

to deriv e the optimal arra y parameters starting with the MAP classi�er as describ ed

in [1]. The MAP classi�er can b e expressed as

ŵ = argmax
w 2 W

P(X jw)P(w) (5.1)

where ŵ is the output h yp othesis, w is a p ossible w ord sequence, W is the set of

all p ossible w ord sequences (h yp otheses) and X is the sequence of observ ed feature

v ectors. In a FSB scenario, X is a function of the arra y parameters. Therefore

Equation 5.1 ma y b e written as

ŵ = argmax
w 2 w

P(X (h)jw)P(w) (5.2)
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where h = [ h1[1]; h1[2]; :::; h1[N ]; h2[1]; :::; hM [1]; :::hM [N ]]T is the v ector of arra y

parameters for all microphone c hannels, hm [p] b eing the pth tap of the �lter whic h

is asso ciated to the microphone m , M the total n um b er of microphones and P

the n um b er of �lter taps p er microphone. Our goal is to �nd arra y parameters those

maximize Equation 5.2 for the correct h yp othesis. F or the time b eing w e can assume

that the correct transcription of the w ord sequence, wc is kno wn. Equation 5.2 can b e

maximized with resp ect to the arra y parameters instead of a p ossible w ord sequence

as

ĥ = argmax
h

P(X (h)jwc)P(wc) (5.3)

Once the correct transcription is kno wn, the language score, P(wc) , is constan t and

its v alue do es not a�ect the optimal arra y parameters. Hence, w e only consider the

acoustic lik eliho o d and write the maxim um lik eliho o d (ML) estimate [1 ] as

ĥ = argmax
h

P(X (h)jwc) (5.4)

The calculation of the acoustic lik eliho o d, P(X (h)jwc) , has b een giv en in Section 2.4

(Equation 2.18). It has also b een men tioned that sp eec h recognizers mostly ev aluate

the acoustic lik eliho o d not o v er all p ossible state sequences, but only o v er the opti-

m um state sequence. Here, w e mak e the same assumption b ecause of computational

complexit y reasons and express the ML estimate as

ĥ = argmax
h ;q2 Qc

Y

i

P(x i (h)jqi )P(qi jqi � 1; wc) (5.5)

where q is the optim um state sequence, Qc is the set of all p ossible state sequences

for the observ ed feature v ectors and HMM mo del of the correct transcription, and

qi is the state whic h q visits at frame i.

In [1], M. Seltzer suggests that it is more con v enien t to use the log-lik eliho o d

instead of Equation 5.5. This yields

ĥ = argmax
h ;q2 Qc

(
X

i

log(P(x i (h)jqi )) +
X

i

log(P(qi jqi � 1; wc))

)

(5.6)

42



CHAPTER 5. LIKELIHOOD MAXIMIZING BEAMF ORMING

A ccording to Equation 5.6, the ML estimate can b e computed as the summation

of t w o terms. The �rst term is the optimization of arra y parameters giv en a state

sequence, while the second term yields the optimization of the state sequence giv en

the correct transcription. Hence, optimization can b e p erformed iterativ ely , i.e. �rst

�x the arra y parameters and �nd the optimal state sequence, then decide the optimal

arra y parameters for this state sequence and so on [1 ].

The optimization of the state sequence w as already men tioned in Section 2.4.

Giv en a transcription, the Viterbi algorithm can b e emplo y ed to estimate the op-

tim um state sequence in an e�cien t manner. This pro cess of �nding the optim um

state sequence for a giv en transcription is called for c e d alignment . In the next sub-

section w e describ e ho w the arra y parameters can b e optimized when the optim um

state sequence is kno wn.

5.2.2 Optimization of the Arra y P arameters

Once the optim um state sequence has b een found b y the Viterbi algorithm, the arra y

parameters should b e optimized. Optimization of the arra y parameters is go v erned

b y

ĥ = argmax
h

X

i

logP(x i (h)jq̂i ) (5.7)

where q̂i is the state at frame i with resp ect to the optim um state sequence.

Unfortunately , there is no closed-form solution for the optimal arra y parameters

b ecause of t w o reasons. First, the state output distributions of HMMs are usually

complicated densities, for example Gaussian mixtures, and second, the acoustic lik e-

liho o d of an utterance and the arra y parameter v ector are related through a series

of linear and non-linear op erations p erformed during the feature extraction pro cess

[1 ]. Therefore, a non-linear optimization metho d should b e applied.

One p ossible solution is to emplo y a gradien t-based approac h to estimate the

optimal v alues of the arra y parameters as describ ed in [1]. Giv en the optimal state

sequence, the total log-lik eliho o d L(h) and its gradien t v ector r h L(h) are de�ned
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as follo ws

L(h) =
X

i

logP(x i (h)jq̂i ) (5.8)

r h L(h) =
�

@L(h)
@h1(1)

;
@L(h)
@h1(2)

; :::;
@L(h)

@hM (N )

� T

(5.9)

The total log-lik eliho o d and its gradien t v ector are ob viously related to the state

output densities of the HMMs and the features used for recognition. The sp eec h rec-

ognizer whic h is used in the exp erimen ts for this w ork is based on HMMs with single

Gaussian output densities with diagonal co v ariance matrices. Mel frequency cepstral

co e�cien ts are used for recognition. F or single Gaussian output distributions, the

total log-lik eliho o d is giv en b y

L(h) =
X

t

�
1
2

�
(x i (h) � � i )

T � � 1
i (x i (h) � � i ) + log((2 � )n det � i )

�
(5.10)

where n is the n um b er of co e�cien ts in a feature v ector, � i and � i are the mean

v ector and co v ariance matrix of the HMM state corresp onding to frame i . The

gradien t v ector can then b e deriv ed as

r h L(h) = �
X

i

@x i (h)
@h

� � 1
i (x i (h) � � i ) (5.11)

where @x i (h)=@h is the Jacobian matrix of the partial deriv ativ es of eac h elemen t of

the feature v ector with resp ect to eac h of the arra y parameters. The full deriv ation

of the Jacobian matrix for the log mel sp ectrum and MF CC can b e found in [1].

Although the recognition is done in MF CC domain, p erforming the optimization

in the log mel sp ectral domain instead of MF CC domain has some adv an tages [1].

Magnitudes of the elemen ts of the MF CC v ectors decrease as the cepstral order

increases. Ho w ev er, log mel sp ectral co e�cien ts ha v e similar magnitudes as they

are based on the energy o v er triangular w eigh ting functions. Similar magnitudes of

the v ector comp onen ts are adv an tageous b ecause large di�erences in the magnitude

force the optimization someho w to neglect the v ery small comp onen ts. In [1 ] it is also

men tioned that the 50% o v erlap b et w een the adjacen t mel �lters is an adv an tage
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during optimization as optimization of a particular mel frequency band tends to

optimize the neigh b oring comp onen ts as w ell. Therefore, the optimization of arra y

parameters in this w ork is done in log mel sp ectral domain, while the recognition

and optimization of state sequences are done in MF CC domain. It is also p ossible to

p erform b oth recognition and parameter optimization in the log mel sp ectral domain,

ho w ev er, as v ery w ell kno wn in the sp eec h recognition comm unit y , p erformance of

the recognizers based on the log mel sp ectrum is m uc h lo w er than the recognizers

based on the MF CC.

In order to p erform recognition and optimization in di�eren t domains, t w o par-

allel HMM sets based on log mel sp ectrum and MF CC domains are necessary . These

parallel mo dels should ha v e iden tical frame-to-state alignmen ts for the same feature

v ector sequence, since the state sequence is optimized in the MF CC domain while

the arra y parameter optimization is p erformed in the log mel sp ectral domain. A

sp ecial training metho d, single-p ass r etr aining [22], can b e applied to obtain t w o

parallel HMM sets. The single-pass retraining metho d requires one robust HMM set

in order to generate the second one. The parameters of the second set are estimated

via a single Baum-W elc h re-estimation with the training data using the parameters

of the �rst HMM set. F or our purp oses, a log mel sp ectrum based recognizer is

obtained from a MF CC-based recognizer via the single-pass retraining. In order to

ha v e iden tical frame-to-state alignmen ts, w e obtain the transition probabilities of

the log mel sp ectrum based system directly from the MF CC-based HMM mo dels

and re-estimate the output probabilities from the MF CC-based mo del in to the log

mel sp ectral domain with one additional Baum-W elc h re-estimation.

5.2.3 Gradien t-based Maximization of the T otal Log-

Lik eliho o d

Ha ving the application sp eci�c form of the total log-lik eliho o d and the gradien t v ec-

tor, gradien t-based approac hes can no w b e emplo y ed. There are v arious gradien t-

based approac hes prop osed in literature. Discussion and implemen tation issues ab out

45



CHAPTER 5. LIKELIHOOD MAXIMIZING BEAMF ORMING

most metho ds can b e found in [23 ]. The imp ortan t issues in c ho osing an optimiza-

tion metho d are the computational complexit y and con v ergence p erformance. The

computational complexit y issue is b ey ond the scop e of this w ork, as w e did not mak e

an y additional e�ort regarding the computational complexit y of the algorithm.

Con v ergence is y et a more imp ortan t problem. Although most metho ds are guar-

an teed to con v erge to an extreme (minim um or maxim um) v alue, the con v erged ex-

treme v alue is not necessarily the global one. This phenomenon migh t decrease the

e�ciency of the optimization if there is a large n um b er of lo cal extreme v alues. There-

fore, it w ould b e quite imp ortan t to disco v er the complexit y of the log-lik eliho o d

function. In fact, it is impractical to visualize the shap e of the log-lik eliho o d func-

tion b ecause of computational complexit y . Ev en if it is to b e computed it is still a

question ho w suc h a m ulti-dimensional function can e�cien tly b e visualized. Ho w-

ev er, w e could exp ect it to ha v e a large n um b er of lo cal maxima. First, there is a v ery

complex relation b et w een the arra y parameters and log-lik eliho o d through linear and

non-linear op erations, mostly during the feature extraction pro cess. Moreo v er, there

are man y in terfering factors that can create mismatc h b et w een the observ ed feature

v ectors and mo del parameters of the ASR system, suc h as complicated RIRs, ad-

ditiv e noise sources, c hannel and recording noise and sp eak er v ariabilit y . Therefore,

one of the most imp ortan t issues in the ev aluation of the LIMABEAM algorithm

is to understand ho w often the algorithm con v erges to lo cal maxima and ho w this

con v ergence issue c hanges with the complexit y of the acoustic situation. In the next

c hapter, w e discuss this issue with resp ect to the results of the exp erimen ts using

the LIMABEAM algorithm.

The initial v alues of the arra y parameters are also essen tial for gradien t-based

optimization. These metho ds generally sho w b etter con v ergence if the initial v alues

of the parameters are close to the global optim um parameters. Ho w ev er it is hard to

�nd an optim um starting con�guration in our case, as there is no information a v ail-

able ab out the global optim um arra y parameters (i.e yielding the global maxim um

of the total lik eliho o d function). In this w ork, w e initialize the arra y parameters
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to an un w eigh ted dela y-and-sum b eamformer (DSB) as suggested in [1] unless an y

other initialization is giv en explicitly . The initialization to an un w eigh ted DSB is

giv en as

hm (p) =

8
<

:

1=M p = 1; 8m;

0 elsewhere:
(5.12)

where M is the n um b er of microphones in the arra y , P is the n um b er of �lter taps

used for eac h microphone and hm (p) is the pth tap of the �lter asso ciated to the

m th microphone.

In [1] Seltzer prop oses using the conjugate-gradien t metho d with the second-order

deriv ativ e information for the optimization of the log-lik eliho o d, as it could lead to

an impro v ed con v ergence p erformance. In this v ersion of the conjugate gradien t

metho d, the second-order deriv ativ e information, the Hessian , is estimated from

the �rst order gradien ts. In this w ork, w e use a similar conjugate-gradien t metho d,

whic h do es not compute the Hessian, as the in tegration of second order information

do es not result in an y p erformance impro v emen t, but increases the computation and

con v ergence times. The implemen tation issues of this metho d can b e found in [23 ].

More information ab out conjugate gradien t based metho ds can b e found in [24].

5.3 Di�eren t Implemen tations of the LIMABEAM

Ab o v e w e assumed that the correct transcription of the observ ed sp eec h signal is

kno wn. Ho w ev er, the goal of sp eec h recognition is to estimate the correct transcrip-

tion, whic h is not kno wn in real situations. The correct transcription is someho w to

b e estimated, and this can b e p erformed in v arious w a ys.

This section discusses three implemen tations of the LIMABEAM algorithm,

where the correct transcription is obtained in di�eren t w a ys, namely Oracle-

LIMABEAM, calibrated-LIMABEAM and unsup ervised-LIMABEAM, as prop osed

in [1].
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5.3.1 The Oracle-LIMABEAM

In the Oracle-LIMABEAM algorithm, the correct transcription of the observ ed

sp eec h signal and the feature v ector sequence of the corresp onding clean sp eec h sig-

nal are assumed to b e kno wn a priori. The optim um state sequences are computed

using the correct transcription and clean sp eec h MF CC features via the Viterbi

algorithm. These optim um state sequences, whic h are normally not a v ailable, are

referred to as or acle state se quenc es [1].

The pro cedure is as follo ws: The oracle state sequence is computed via the Viterbi

algorithm with the MF CC-based recognizer using the correct transcription and the

sp eec h features of the corresp onding clean sp eec h signal. The distorted sp eec h signal

is captured b y the microphone arra y and time-dela y comp ensation is p erformed. The

�lter parameters of the FSB are set to the initial v alues and the input c hannels are

pro cessed as usual b y the FSB. The initialization of the �lter taps is done as discussed

in Section 5.2.3. Log mel sp ectral features are extracted from the summed signal.

No w, this feature v ector sequence computed from the recorded signal and the oracle

state sequence are used to optimize the arra y parameters in the log mel sp ectral

domain. The optimized arra y parameters can then b e used as FSB parameters to

pro cess the microphone c hannels b efore the recognition. The recognition is done in

the MF CC domain for the sak e of more robustness. The �o w c hart of the Oracle-

LIMABEAM is sho wn in Figure 5.2.

Ob viously , sp eec h recognition w ould not b e necessary if the correct transcrip-

tion w ere kno wn. Similarly , if the use of a close-talk microphone is desirable, clean

sp eec h features obtained from its input already result in high p erformance ASR sys-

tems. Because w e are practically in terested in en vironmen ts where w e ha v e access

to neither correct transcriptions nor clean sp eec h features, the Oracle-LIMABEAM

algorithm is only of theoretical in terest. The oracle state sequences are the b est

information that could b e in tegrated in to the optimization sc hema. Therefore, the

p erformance of the Oracle v ersion can b e considered as an upp er b ound for the

p erformance of the LIMABEAM algorithm in real situations.
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Figure 5.2: Flo w c hart of the oracle-LIMABEAM
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5.3.2 The Calibrated-LIMABEAM

The Oracle-LIMABEAM algorithm assumes that the correct transcription of the

sp ok en utterance is kno wn a priori. Ho w ev er, this assumption do es not hold in real

situations as discussed ab o v e. Because the correct transcription and the clean sp eec h

features can not b e accessed in real scenarios, the state sequences m ust b e optimized

in a di�eren t manner.

The calibrated-LIMABEAM algorithm is one of the t w o solutions suggested in [1]

to solv e this parado x. This algorithm assumes that the arra y parameters optimized

for a calibration utterance, whose correct transcription is kno wn, do increase the

sp eec h recognition p erformance not only for the v ery utterance but also for other

utterances with unkno wn transcriptions if they are captured in the same acoustic

en vironmen t.

The calibration is done in the follo wing manner: The calibration utterance, whose

correct transcription is kno wn a priori, is sp ok en b y the user. Recorded microphone

signals are pro cessed b y the initial FSB and log mel sp ectral features are extracted.

In this w ork, the initial con�guration of the �lter taps is set to an un w eigh ted dela y-

and-sum b eamformer unless explicitly indicated. Optimization of the state sequence

is done in the MF CC domain using the correct transcription and the feature v ectors

computed from the arra y recording, as the clean sp eec h feature v ectors are no more

accessible. Once the state sequence is optimized, the optimization of arra y param-

eters can b e p erformed as ab o v e. This constitutes one iteration of the calibration

pro cess [1]. No w, the optimized arra y parameters can b e used to pro cess the recorded

signal once more to obtain b etter feature v ectors. The optim um state sequence is

re-estimated, and calibration is rep eated with the new sequence. The calibration

pro cess is iterated in this manner un til the con v ergence of the total log-lik eliho o d.

Figure 5.3 demonstrates the calibration pro cess.

The arra y parameters optimized for the calibration utterance are exp ected to

w ork w ell for other utterances unless the acoustic en vironmen t c hanges ( i.e. learned

parameters are v alid for the future [1]). Changes in the source lo cation, addi-
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tion or remo v al of in terfering sources and similar e�ects migh t degrade the p er-

formance of the calibrated-LIMABEAM, b ecause the optimized arra y parameters

are not an ymore v alid for the new acoustic conditions. Therefore, this v ersion of the

LIMABEAM algorithm is suitable for en vironmen ts where the acoustic conditions

are not c hanging.

5.3.3 The Unsup ervised-LIMABEAM

In man y distan t-talking en vironmen ts, the acoustic conditions are signi�can tly time-

v arying. In suc h en vironmen ts, the calibrated arra y parameters are only v alid for

short time in terv als. Moreo v er, reading the calibration utterance migh t ev en b e im-

practical or undesirable in man y situations, suc h as information desks. These en vi-

ronmen ts require the arra y parameters to b e up dated dynamically for ev ery sp ok en

utterance. Ho w ev er, as discussed ab o v e, optimizing the state sequence requires the

a priori kno wledge of the correct transcription, whic h can not b e accessed an ymore.

This dilemma can b e solv ed b y estimating the transcriptions and using them in an

unsup ervise d manner to p erform the optimization [1].

The estimation of the correct transcription is obtained via the recognition of

the recorded signal after b eing pro cessed b y the initial FSB con�guration. This

transcription is then used to optimize the state sequence. Both the initial recognition

and optimization of the state sequence is done in the MF CC domain. Once the state

sequence estimate is obtained, the arra y parameters can b e optimized in the log

mel sp ectral domain. The unsup ervised-LIMABEAM can b e iterated similarly to

the calibrated-LIMABEAM algorithm un til the con v ergence of the lik eliho o d. The

Figure 5.4 sho ws the �o w c hart of the unsup ervised-LIMABEAM.

Clearly , the initial transcriptions whic h are estimated in this manner do con tain

errors. In fact, when the transcription has errors, the algorithm do es not an ymore

maximize the lik eliho o d of the correct transcription, but an erroneous one. It could

b e argued that this w ould decrease the recognition rates. Ho w ev er, the acoustic

en vironmen t can b e assumed as non-v arying while an utterance (whose length is
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t ypically in the order of seconds) is b eing sp ok en. In other w ords, the relation b e-

t w een the recorded signal and the corresp onding clean signal (whic h is not kno wn)

is more or less the same throughout the whole utterance. This migh t b e seen as a

stationary distortion during an utterance. Therefore, the �lter parameters whic h are

optimized during the correctly recognized parts of the sp ok en utterance are exp ected

to decrease the n um b er of errors in the transcription. Ob viously , it is not p ossible

to decide whic h parts of the utterance are correctly transcrib ed and that is wh y the

optimization should b e done considering the whole utterance. Nonetheless, if the es-

timated transcription con tains a small n um b er of errors with resp ect to the correctly

recognized parts of the utterance, the optimization pro cess is mostly driv en b y the

correct lab els, p ossibly resulting in b etter recognition p erformance.
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Chapter 6

T est Results and Ev aluation

6.1 In tro duction

In the previous c hapter, w e theoretically discussed the LIMABEAM algorithm as a

p ossible solution to the robustness problem of ASR in distan t-talking en vironmen ts.

The LIMABEAM algorithm searc hes the solution in a di�eren t w a y than the con-

v en tional microphone arra y pro cessing metho ds b y com bining the sp eec h recognizer

and arra y pro cessor units. This new suggestion migh t lead to an e�cien t solution

for robust sp eec h recognition. Ho w ev er, the ev aluation of the pro cedure is not ob vi-

ous, as most of the p ossible ev aluation criteria for the con v en tional arra y pro cessing

metho ds can not b e used.

The recognition rates are ob viously the most imp ortan t criteria to ev aluate ASR

systems . The signi�can t impro v emen ts that can b e obtained using the LIMABEAM

in terms ASR recognition rates [1] are encouraging. Ho w ev er, the recognition results

alone are far a w a y from explaining ho w the algorithm w orks, or in other w ords un-

der whic h circumstances and wh y the algorithm is exp ected to w ork or fail. On the

other hand, con v en tional arra y pro cessor p erformance criteria based on the optimal

signal output w a v eform are not an ymore meaningful as the ob jectiv e function of

the LIMABEAM algorithm is di�eren t. Ev en the b eampatterns obtained using the

LIMABEAM algorithm do not con tain m uc h information. The algorithm imp oses
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no criterion on the b eampattern [1 ], therefore w e can not exp ect v ery meaningful

b eampatterns. In fact, the b eampatterns whic h are optimized to maximize the lik e-

liho o d of the correct transcriptions ha v e sometimes ev en larger sidelob es than those

of the dela y-and-sum b eamformer. Ho w ev er these b eampatterns still yield b etter

recognizer p erformance (see [1 ]).

Clearly , the algorithm should b e in v estigated closely in order to understand its

nature. In this c hapter, w e represen t the results of a series of exp erimen ts using the

LIMABEAM algorithm in rev erb eran t en vironmen ts and discuss the results in order

to in v estigate its nature under suc h circumstances.

6.2 Exp erimen tal Setup

In this c hapter, di�eren t test setups are considered in order to ev aluate the

LIMABEAM algorithm. These include di�eren t microphone arra y structures as w ell

as v arious rev erb eration c haracteristics. A p ossible implemen tation of the algorithm

with a single microphone is also considered, although no b eamforming can b e ob-

tained with this con�guration. The recognition task w as c hosen to b e recognition of

digit sequences b ecause of the simple structure of a connected digit recognizer. A

connected digit recognizer, whic h is dev elop ed with the free and user-friendly HTK

soft w are [6 ] is used for this purp ose. The state sequences are optimized using the

Viterbi deco ding to ol of the HTK library . The optimization of the arra y parame-

ters is implemen ted in MA TLAB. The training and test data are obtained from the

TI-digit database [25 ]. The test data are syn thetically generated b y con v olving the

clean sp eec h utterances with ro om impulse resp onses and some other �lters.

6.2.1 Con�guration of the ASR System

An ASR system based on the Hidden Markov Mo del T o olkit (HTK) soft w are w as

used in the exp erimen ts. HTK is a user-friendly and free set of soft w are to ols for

dev eloping systems based on Hidden Mark o v Mo dels (HMM), primarily designed
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for sp eec h pro cessing and recognition purp oses [6]. It pro vides a large collection of

basic to ols, whic h w ere dev elop ed in the C language, for building v arious t yp es of

HMM-based sp eec h recognition systems.

F or the exp erimen ts, a connected digit recognizer based on the mel frequency

cepstral co e�cien ts (MF CC) w as dev elop ed. The task of connected digit recognition

w as c hosen b ecause of its simplicit y . The task v o cabulary consists of digits from one

to nine and t w o p ossible pron unciations of zero, 'zero' and 'oh'. The system emplo ys

t w elv e HMMs, including nine for the digits b et w een one and nine, t w o mo dels for

the t w o p ossible pron unciations of zero and one mo del for the silence in terv als. The

HMMs for the w ords consist of 18 states, while the silence mo del has 5 states. Eac h

sp eec h utterance consists of a silence in terv al at the b eginning, a n um b er of digits

and a silence in terv al at the end. This sp eec h recognizer w as trained with clean

sp eec h utterances from the TI-Digits database [25 ].

The state output probabilities of the HMMs are mo deled as single Gaussian

densities. Although Gaussian mixtures usually yield b etter ASR p erformance, [1]

rep orts that in tegration of Gaussian mixtures in to the LIMABEAM algorithm do es

not result in an y impro v emen ts in most of the cases. Therefore, instead of mix-

tures of Gaussian densities, single Gaussian densities w ere selected for state output

probabilit y mo deling.

The computation of the feature v ectors is similar to the pro cedure whic h is

outlined in Section 2.3. The sampling frequency of the system is 20kHz. Pre-emphasis

is not included in to the recognizer as it is not in tegrated in to the framew ork of the

LIMABEAM algorithm. A Hamming windo w is used for segmen tation of the sp eec h

signals. The frame length is 25 milliseconds (500 samples) with 10 milliseconds

(200 samples) time dela y b et w een the �rst samples of adjacen t frames. The mel

frequency analysis is based on a triangular mel �lter-bank with 24 mel bands, whic h

co v er equal areas in the mel frequency domain. The total bandwidth of this mel

�lter-bank is from 64Hz to 10000Hz. MF CC v ectors of length 11 are calculated via

the discrete Cosine transform (DCT) from the log mel sp ectrum v ectors of length
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24. The 0'th cepstral parameter, whic h is similar to the log energy of the frame

[6 ], is app ended to the MF CC v ector. The �rst order deriv ativ es of the MF CC are

also in tegrated in order to increase the robustness of the ASR system. These �rst

order deriv ativ es, called delta c o e�cients , are calculated on-the-�y ( i.e. during the

recognition pro cess). The feature extraction pro cess is p erformed with the sp eec h

pro cessing and co ding to ols of the HTK soft w are, except sampling and quan tization.

This MF CC-based sp eec h recognizer w as used for recognition purp oses. The op-

timization of the arra y parameters w as done in the log mel sp ectral domain as

discussed in Section 5.2.2. F or this purp ose, a log mel sp ectrum based recognizer

w as dev elop ed from the MF CC-based recognizer via the single-pass retraining [22]

feature of the HTK soft w are. During the single-pass retraining, the transition prob-

abilities of the MF CC-based recognizer w ere left unc hanged, while the state output

densities w ere re-estimated in the log mel sp ectral domain. This pro cedure ensures

that b oth recognizers ha v e iden tical frame-to-state alignmen ts [1]. This second recog-

nizer is based on log mel sp ectrum v ectors of length 24. The state output probabilit y

densities are mo deled with single Gaussian densities. Unlik e the MF CC-based rec-

ognizer, �rst order deriv ativ es of the log mel sp ectral features are not in tegrated in to

the framew ork.

6.2.2 Sp eci�cations of the T raining and T est Data

The TI-Digits database w as used to obtain training and test data. This database has

b een created as a collection of clean sp eec h utterances read b y a v ariet y of sp eak ers

for sp eak er-indep enden t sp eec h recognition purp oses. The set of sp eak ers w as c hosen

from male and female adults in order to re�ect most of the regional and ethnical

dialects of American English (see [25] for the details of the TI-Digits database).

The sp eec h recognizer w as trained with the clean sp eec h utterances from the

training set of the TI-Digits database. The test data consists of utterances c hosen

from the test set of the TI-Digits database. This test data set con tains 90 utterances

sp ok en b y 5 male and 5 female adults. 9 di�eren t utterances w ere selected from eac h
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sp eak er. Moreo v er, all the selected utterances are di�eren t from eac h other. Eac h

utterance consists of 7 digits, resulting in a total of 630 digits. Throughout this

thesis, this data set is denoted as testset 90 . In order to ev aluate the p erformance of

the LIMABEAM algorithm with resp ect to the length of the optimization sequence,

a di�eren t data set w as created b y concatenating the digit utterances in the testset

90. Three 7-digit utterances from the same sp eak er w ere concatenated and a new

utterance of 21 digits w as obtained. By this w a y , all the utterances in the testset

90 w ere concatenated with t w o other utterances. This data set, whic h consists of 30

utterances of 21 digits is denoted as testset 30 .

The distortion of the test data w as p erformed b y con v olution with measured RIRs

and injection of syn thetically generated additiv e noise. The aim of the exp erimen ts

is mostly to ev aluate the p erformance of the LIMABEAM algorithm with resp ect to

ro om rev erb eration, hence in most of the exp erimen ts only ro om rev erb eration w as

in v estigated. F or this purp ose, measured ro om impulse resp onses (RIRs) from t w o

en vironmen ts, ILMENA U and MMR, and some other designed �lters w ere used.

In some test setups, syn thetically generated noise w as added to the clean sp eec h

�les, either separately or in addition to ro om rev erb eration. All sp eec h pro cessing

to pro duce the test data w as done in MA TLAB.

6.2.3 T est En vironmen ts

In order to ev aluate the LIMABEAM algorithm in rev erb eran t en vironmen ts, mea-

sured RIRs from t w o di�eren t enclosures w ere used. The prop erties of these measured

RIRs are giv en b elo w.

6.2.3.1 ILMENA U

The �rst set of RIRs w ere measured in an enclosure in the Univ ersit y of Ilmenau,

hence w e refer to it as ILMENA U. The linear arra y consists of eigh t microphones

whic h are placed with logarithmic in ter-elemen t distances. The sp eak er is assumed

to b e 4.12 meters a w a y from the arra y . The rev erb eration time of an en vironmen t
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is de�ned as the time required for a sound energy deca y of 60dB after the sound

source is turned o� (Chapter 3). The ILMENA U en vironmen t has a rev erb eration

time of ab out 700 milliseconds. The signal-to-rev erb eration ratio (SRR) is the ratio

of the direct sound energy to the energy of ec ho es (Chapter 3). The SRR of the

ILMENA U en vironmen t is ab out -4.9 dB. Figure 6.1 sho ws the arra y con�guration

of the ILMENA U en vironmen t.

6.2.3.2 MMR

The second RIR set w as measured in a m ultimedia ro om in the Univ ersit y of

Erlangen-Nurem b erg. W e call this MMR en vironmen t. The microphone and sp eak er

p ositions of the MMR en vironmen t are sho wn in Figure 6.2. The arra y consists of

6 microphones whic h are placed with 4.2 cm in ter-elemen t distances. The sp eak er

is p ositioned at v arious p oin ts on a circle with a radius of 2 meters around the

microphone arra y . In this thesis, t w o sp eak er p ositions w ere considered. P osition 1

(P os. 1) is along the arra y normal (0

�
) and p osition 2 (P os. 2) is placed at 30

�
from

the arra y normal. The rev erb eration time of the MMR en vironmen t is ab out 350

milliseconds. This enclosure has an SRR ab out 3.9 dB.

6.2.4 Implemen tation of the LIMABEAM Algorithm

The LIMABEAM algorithm w as mostly implemen ted in MA TLAB. Although the

MA TLAB implemen tation is clearly less e�cien t in terms of computation times than

a p ossible implemen tation in C, the �exibilit y and built-in to ols o�ered b y MA TLAB

are considered to b e more imp ortan t for the ev aluation purp oses. Some parts of the

pro cedure w ere p erformed with the already a v ailable HTK to ols. Unix scripts w ere

emplo y ed to con trol the op eration of the pro cedure.

The �lter-and-sum b eamformer pro cessing w as implemen ted in MA TLAB. The

time-dela y estimates necessary for the time-dela y comp ensation w ere computed us-

ing the crosscorrelations of the microphone c hannels. Unless another initialization

is giv en explicitly , the FSB parameters w ere initialized to the DSB con�guration
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b efore the optimization.

The feature extraction pro cedure w as implemen ted using the sp eec h pro cessing

and co ding to ols of the HTK soft w are as describ ed ab o v e. The optimization of the

state sequence w as also done with the Viterbi deco ding to ol of the HTK soft w are.

MA TLAB scripts w ere emplo y ed to implemen t the arra y parameter optimization

pro cedure. The total log-lik eliho o d and gradien t v ectors required for the optimiza-

tion w ere computed b y MA TLAB functions, where required feature v ectors w ere

calculated with HTK to ols. T w o v ersions of the conjugate-gradien t metho d w ere

emplo y ed in MA TLAB for the non-linear optimization of the arra y parameters ac-

cording to the C co de giv en in [23 ]. The �rst v ersion of the conjugate gradien t

metho d emplo ys the second order deriv ativ e appro ximations, i.e. Hessians, during

the line searc h. The second v ersion of the algorithm p erforms optimization without

emplo ying the Hessian information. The Hessian-based line searc h is replaced with

a linear line searc h. Both implemen tations of the algorithm w ere tested in some

conditions. As b oth v ersions do yield appro ximately the same p erformance, exp eri-

men ts throughout this thesis w ere p erformed with the second v ersion, whic h do es not

emplo y Hessians, as the in tro duction of Hessians increases the computation times

signi�can tly .

6.3 Exp erimen ts Using the Oracle-LIMABEAM

The oracle-LIMABEAM algorithm is clearly far a w a y from b eing a practical solu-

tion b ecause of the assumptions of a priori kno wn correct transcriptions and clean

sp eec h features. Ho w ev er, it is imp ortan t in terms of understanding the nature of

the LIMABEAM metho d as it giv es an upp er b ound on the p erformance of the al-

gorithm. In the scop e of this w ork, the oracle-LIMABEAM algorithm is in v estigated

in sev eral exp erimen tal setups to ev aluate the general LIMABEAM sc hema.
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6.3.1 Exp erimen ts with a Single Microphone

The rev erb eration of an enclosure can b e mo deled with an FIR �lter according to

Section 3.3. The e�ects of the ro om rev erb eration are then giv en b y the con v olution

of the source signal with the impulse resp onse of this FIR �lter, whic h is called the

ro om impulse resp onse. The ro om impulse resp onse of an enclosure is generally quite

long, complicated and non-in v ertible. Therefore, the lik eliho o d function whic h is to

b e maximized b y the LIMABEAM algorithm is v ery complicated. Practically it is

not p ossible to kno w if the LIMABEAM algorithm con v erges to the global optim um

arra y parameters

1

in a complicated ro om rev erb eration situation.

In the test series with a single microphone, w e generally restrict the con v olu-

tional distortion to impulse resp onses whic h are simpler than a real ro om impulse

resp onse. With these simple �lters and a single microphone, w e could at least guess

ho w the optim um arra y resp onse w ould lo ok lik e. F or this purp ose, three di�eren t

�lters w ere con v olv ed with the clean sp eec h utterances to create the test data. In

another test setup, clean sp eec h signals w ere distorted with additiv e noise. The t w o

�nal exp erimen ts w ere p erformed using the measured impulse resp onses from the

ILMENA U and MMR en vironmen ts. The dataset testset 90 (Section 6.2.2) w as used

for this test series. The table 6.1 sho ws the recognition rates in these exp erimen ts

in terms of w ord accuracy . Recognition rate with clean sp eec h utterances is also

giv en for comparison. The column 'Single Microphone' sho ws the results without

the LIMABEAM algorithm, while the column 'the oracle-LIMABEAM' consists of

the results using the oracle v ersion of the algorithm. These results are discussed

b elo w.

Before discussing the results of these exp erimen ts, w e w ould lik e to note that this

single microphone con�guration can not yield an y b eamforming as spatial �ltering

is not p ossible with a single sensor. In fact, it w ould b e more meaningful to refer to

this con�guration as likeliho o d maximizing �ltering . Ho w ev er, w e still use the term

1

Global optim um arra y parameters express the arra y parameters whic h lead to the global max-

im um of the lik eliho o d of the correct transcription
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T est Setup

No.

T aps

Single

Microphone

Oracle-

LIMABEAM

Clean Sp eec h - 99.37% -

High-pass �ltered sp eec h 20 71.90% 97.46%

Lo w-pass �ltered sp eec h 20 69.37% 72.70%

I IR �ltered sp eec h 5 76.98% 86.03%

Clean sp eec h + noise(2-5kHz) 20 74.29% 77.62%

Exp erimen t in the ILMENA U

en vironmen t

10 61.43% 76.51%

Exp erimen t in the MMR en vironmen t 10 89.68% 88.57%

T able 6.1: ASR p erformance of the Oracle-Microphone with a single microphone in

terms of w ord accuracy . The column 'Single Microphone sho ws recognition results

without the algorithm. Recognition rates using the oracle-LIMABEAM are sho wn

in the column named 'the oracle-LIMABEAM'.

lik eliho o d maximizing b eamforming to b e consisten t with the terminology in this

thesis.

6.3.1.1 Exp erimen t with a High-P ass Filter

The �rst exp erimen t with a single microphone w as p erformed using an FIR high-

pass �lter with 20 taps. The input signal to the system w as obtained b y con v olving

clean sp eec h utterances from the testset 90 with this high-pass �lter. In terms of

recognition rates (see T able 6.1) the oracle-LIMABEAM algorithm can ac hiev e a

v ery high recognition rate, whic h is ev en v ery close to the recognition rate with

clean sp eec h utterances.

In this exp erimen t, w e are also in terested in some other prop erties in addition

to the recognition rates. The Figures 6.3 and 6.4 demonstrate in teresting prop erties

of the exp erimen ts. Figure 6.3(a) sho ws the magnitude resp onses of the high pass

64



CHAPTER 6. TEST RESUL TS AND EV ALUA TION

0 0.2 0.4 0.6 0.8
-30

-25

-20

-15

-10

-5

0

5

10

Normalized Frequency (´p  rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

(a)

0 0.2 0.4 0.6 0.8
-20

-15

-10

-5

0

5

10

15

20

Normalized Frequency (´p  rad/sample)
M

ag
ni

tu
de

 (
dB

)

Magnitude Response (dB)

(b)

Figure 6.3: Magnitude resp onses of (a) high-pass �lter used for the exp erimen t (b)

t w o �lters optimized b y the oracle-LIMABEAM algorithm for t w o di�eren t utter-

ances

�lter whic h w as used in this exp erimen t and Figure 6.3(b) sho ws those of �lters

optimized b y the oracle-LIMABEAM algorithm for t w o di�eren t sp eec h utterances.

The optimized �lters are not exactly in v erse of the high-pass �lter, but they ha v e

a clear lo w-pass tendency whic h migh t in v ert the e�ect of the high-pass �lter to

some exten t. In fact, the high-pass �lter whic h w as used in the tests is an FIR

�lter whic h theoretically could only b e in v erted b y an In�nite-Impulse-Resp onse

�lter. Ho w ev er, the LIMABEAM algorithm emplo ys only FIR �lters, hence it is

imp ossible to con v erge to the in v erse of this high-pass �lter.

On the other hand, w e should also tak e the optimization data in to accoun t. The

optimization of arra y parameters is not done using the signal w a v eform data, but

the log mel sp ectral co e�cien ts whic h are based on a triangular mel �lter-bank.

In other w ords, the LIMABEAM algorithm do es not kno w the e�ects of high-pass

�ltering on the w a v eform or frequency-domain represen tation of the input signal,

but on its log mel sp ectral represen tation. This e�ect can b e b etter understo o d b y
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Figure 6.4: Log mel sp ectral co e�cien ts of the utterance '74o8o12' computed (a)

from clean sp eec h signal (b) from high-pass �ltered sp eec h signal (c) after the oracle-

LIMABEAM pro cessing
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comparing the log mel sp ectral co e�cien t v ectors b efore and after the LIMABEAM

algorithm. Figure 6.4 sho ws the log mel sp ectral co e�cien t v ectors of the utterance

'74o8o12'. The co e�cien t v ectors obtained from the clean utterance are plotted on

Figure 6.4(a). Figures 6.4(b) and 6.4(c) sho w the co e�cien t v ectors of the utterance

after high-pass �ltering and after LIMABEAM pro cessing, resp ectiv ely . The energy

concen trations of lo w frequency comp onen ts, whic h are lost as a result of the high-

pass �ltering, are almost reco v ered b y the LIMABEAM algorithm. In fact, the �rst

few co e�cien ts are still sligh tly smaller than the co e�cien ts of the clean utterance.

The reason is clear from the magnitude resp onses giv en ab o v e. The high-pass �lter

has an atten uation of 30dB at this frequency in terv al, while the optimized �lters

ha v e gains in the range of 15-17dB. Ho w ev er, despite this e�ect, the recognition

p erformance nearly reac hes the ASR p erformance with clean sp eec h.

The recognition results obtained using the LIMABEAM algorithm with high-

pass �ltered sp eec h are quite promising. Although the magnitude resp onses of the

optimized �lters seem to b e somewhat questionable , they lead to a great ac hiev emen t

in restoring energy in lo w frequency bands and in recognition p erformance.

6.3.1.2 Exp erimen t with a Lo w-P ass Filter

F or the second case of the exp erimen ts with a single microphone, clean sp eec h signals

w ere con v olv ed with the impulse resp onse of a lo w-pass �lter. The lo w-pass �lter

whic h w as used in this exp erimen t w as implemen ted as an FIR �lter with 20 taps.

In con trast to the �rst exp erimen t with high-pass �ltered sp eec h signals, the oracle-

LIMABEAM pro cessing only leads to v ery limited impro v emen ts of ab out 3% in the

recognition rates (see T able 6.1).

Figures 6.5(a) and 6.5(b) sho w the magnitude resp onses of the lo w-pass �lter

and of t w o �lters obtained from the oracle-LIMABEAM algorithm in this exp eri-

men t. Comparing the t w o plots, the 'optimized' �lters are ob viously not exp ected

to comp ensate the e�ects of lo w-pass �ltering on the sp eec h signals e�ectiv ely .

The log mel sp ectra of the sp eec h utterance '74o8o12' are plotted in Figure 6.6.
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Figure 6.5: Magnitude resp onses of (a) lo w-pass �lter used for the exp erimen t (b) t w o

�lters optimized b y the oracle-LIMABEAM algorithm for t w o di�eren t utterances

Figure 6.6(a) is the sp ectrum of the clean sp eec h signal. The t w o other plots, Figure

6.6(b) and 6.6(c) sho w the sp ectra of the lo w-pass �ltered sp eec h signal and of the

signal after the oracle-LIMABEAM pro cessing. The energy in middle mel frequency

bands are somewhat restored b y the LIMABEAM algorithm, ho w ev er, the algorithm

is far a w a y from comp ensating the loss in high frequency bands.

The reasons that cause the oracle-LIMABEAM algorithm to 'fail' in this exp eri-

men tal setup are not ob vious. One reason could b e the fact that sp eec h signals ha v e

higher energy concen trations in the lo w er mel frequency bands (see Figure 6.6(a)).

As a result of this, arra y optimization migh t b e go v erned b y the lo w er co e�cien ts,

whic h prev en ts the energy in the higher bands to b e restored. One other p ossible

explanation is the e�ect of lo w-pass �ltering on the higher mel frequency bands.

As these higher bands already con tain lo w energy concen tration, lo w-pass �ltering

causes the information here to b e almost completely lost. Therefore, the oracle-

LIMABEAM algorithm has to o little kno wledge ab out the energy in these bands
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Figure 6.6: Log mel sp ectral co e�cien ts of the utterance '74o8o12' computed (a)

from clean sp eec h signal (b) from lo w-pass �ltered sp eec h signal (c) after the oracle-

LIMABEAM pro cessing
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and they can not b e restored. In fact, high-pass �ltering causes the high energy in

the lo w mel bands not to b e lost, but degraded (see 6.4). Hence, they can b e restored

b y the algorithm. In con trast, Figure 6.6 sho ws that the lo w sp eec h energy in the

higher mel bands is almost completely lost after lo w-pass �ltering.

6.3.1.3 Exp erimen t with an In�nite-Impulse-Resp onse Filter

The �lters whic h w ere used for the exp erimen ts up to no w are FIR �lters. As w ell

kno wn, an FIR �lter can only exactly b e in v erted b y an In�nite-Impulse-Resp onse

(I IR) �lter. Ho w ev er, LIMABEAM algorithm emplo ys FIR �lters, whic h ob viously

can not con v erge to the exact in v erse of an another FIR �lter. Therefore, w e still

can not in v estigate ho w close the optimized �lters are to the kno wn in v erse of the

�lter whic h is used for distorting the input sp eec h.

F or this exp erimen t, the sp eec h signals w ere con v olv ed with an in v ertible I IR

�lter. Figures 6.7(a) and 6.8(a) sho w the magnitude resp onse and p ole-zero plot of

this �lter, resp ectiv ely . The t w o zeros are placed at zero, b ecause the FIR �lters to

b e optimized b y the oracle-LIMABEAM algorithm can only ha v e their p oles at zero.

The p oles are placed inside the unit circle for stabilit y . This �lter can b e in v erted

b y an FIR �lter, whic h has its p oles at zero and p oles at the p ositions of the zeros

of the I IR �lter.

Filters with 5 co e�cien ts w ere optimized b y the oracle-LIMABEAM algorithm.

T w o of the zeros are exp ected to b e placed at the origin of the p ole-zero plot and the

other t w o zeros to b e at the p ositions corresp onding to the p oles of the I IR �lters.

The magnitude resp onse and p ole-zero plot of an example of the �lters optimized are

sho wn in Figures 6.7(b) and 6.8(b). The zeros are not exactly placed at the exp ected

p ositions, but in their vicinit y . One p ossible explanation for this phenomenon is

the existence of a n um b er of lo cal maxima in the lik eliho o d function, to whic h

the conjugate-gradien t optimization migh t con v erge. One other fact whic h should

b e tak en in to accoun t is the training of HMMs with a n um b er of di�eren t sp eec h

signals from di�eren t sp eak ers. The sto c hastic mo del parameters are calculated as an
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Figure 6.7: Magnitude resp onses of (a) I IR �lter used for the exp erimen t (b) a �lter

optimized b y the oracle-LIMABEAM algorithm
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Figure 6.8: P ole-zero plots of (a) I IR �lter used for the exp erimen t (b) a �lter

optimized b y the oracle-LIMABEAM algorithm
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a v erage of all signals in the training set, hence there could b e a sligh t mismatc h for a

particular utterance from a particular sp eak er, whic h could c hange the con v ergence

p oin t of the conjugate-gradien t algorithm up to some extend.

Ob viously , the �lters computed b y the oracle-LIMABEAM algorithm are not the

optimal ones whic h are exp ected, but close to them. The recognition results sho w

that this con�guration still results in a signi�can t increase in ASR p erformance (see

T able 6.1).

6.3.1.4 Exp erimen t with A dditiv e Noise

F or all of the ab o v e test scenarios, the clean sp eec h signals w ere con v olv ed with a

giv en �lter to sim ulate the signal recorded b y the microphone. In this scenario, w e

ev aluate the oracle-LIMABEAM algorithm with additiv e noise, instead of con v olu-

tional distortion.

F or this exp erimen t, the test signals w ere created b y injecting arti�cial colored

noise in to clean sp eec h signals. The colored noise signal w as obtained b y passing a

white Gaussian noise sequence through a band-pass �lter whose cuto� frequencies

are 2 and 5kHz. A v erage SNR of the arti�cially generated test signals is 11.8dB.

T able 6.1 sho ws that the oracle-LIMABEAM algorithm is only able to pro vide

v ery limited impro v emen ts in this case. T o in v estigate the situation closely , log mel

sp ectra examples are sho wn in Figure 6.9. Figure 6.9(a) is the log mel sp ectrum

of the clean sp eec h signal '44z5938a'. Log mel sp ectra of the distorted signal and

of the LIMABEAM output are sho wn in Figures 6.9(b) and 6.9(c), resp ectiv ely .

F rom the �gures, it is ob vious that the oracle-LIMABEAM manages to remo v e only

some small amoun t of the additiv e noise from the input signal. In fact this result

is exp ected b ecause no b eamforming can b e p erformed with a single microphone.

When no b eamforming is p ossible, con v olution with an optimized �lter can not easily

remo v e the additiv e distortion while main taining the desired signal. Ho w ev er, in case

of microphone arra ys, optimization is exp ected to remo v e the directions from whic h

noise signals arriv e out of the b eampattern of the arra y , decreasing the amoun t of
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Figure 6.9: Log mel sp ectral co e�cien ts of the utterance '44z5938' computed (a)

from clean sp eec h signal (b) disturb ed with additiv e noise (c) after the oracle-

LIMABEAM pro cessing
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additiv e distortion in the captured signal.

6.3.1.5 Exp erimen ts in the ILMENA U En vironmen t

Ab o v e, w e discussed the results of the exp erimen ts with designed simple �lters to

in v estigate some con v ergence issues of the oracle-LIMABEAM algorithm. F rom no w

on, the p erformance using the oracle-LIMABEAM is in v estigated with use of mea-

sured ro om impulse resp onses.

F or this exp erimen t, the test data set w as obtained b y con v olving the clean sp eec h

utterances with the RIR from the ILMENA U en vironmen t. The fourth microphone

in the arra y (see Figure 6.1) w as c hosen for this test. T able 6.1 sho ws that the oracle-

LIMABEAM is able to pro vide a promising gain in w ord accuracy for this scenario,

namely from 61.43% to 76.51%.

Log mel sp ectra from the exp erimen t are sho wn in Figure 6.10. Figures 6.10(a)

and 6.10(b) depict the log mel sp ectral co e�cien ts of the clean sp eec h signal

'74o8o12' and of the same signal after b eing con v olv ed with the RIR from ILME-

NA U. The e�ects of ro om rev erb eration are clearly visible. The log mel sp ectrum

after the oracle-LIMABEAM pro cessing, whic h is giv en in Figure 6.10(c), indicates

that the oracle-LIMABEAM pro vides a sligh t de-r everb er ation e�ect. Some of the

sme aring e�ect of rev erb eration is comp ensated. W e observ e that the lo w-pass c har-

acteristic of the en vironmen t is partly remo v ed. This is more visible in Section

6.3.2.1, where frequency resp onses are considered.

The ab o v e discussion w as limited to �lters with ten co e�cien ts. Ob viously , these

�lters are v ery short with resp ect to the rev erb eration time of the ILMENA U en vi-

ronmen t (700 milliseconds). It is not practical to incorp orate �lters whic h span the

whole rev erb eration time

2

, ho w ev er the n um b er of �lter co e�cien ts can b e increased

up to a reasonable n um b er. Figure 6.11 sho ws the ASR p erformance obtained with

�lters of di�eren t lengths.

2

A t a sampling frequency of 20 kHz, w e w ould need 20000� 0:700 = 14000 �lter taps to span

a rev erb eration time of 700 milliseconds.
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Figure 6.10: Log mel sp ectral co e�cien ts of the utterance '74o8o12' computed (a)

from clean sp eec h signal (b) con v olv ed with RIR 'ILMENA U' (c) after the oracle-

LIMABEAM pro cessing
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Figure 6.11: ASR p erformance using the oracle-LIMABEAM with one microphone

in the ILMENA U en vironmen t with resp ect to di�eren t n um b ers of �lter taps

In tuitiv ely , w e w ould exp ect that ASR p erformance increases with the n um b er

of �lter co e�cien ts. Ho w ev er, these results sho w that shorter �lters yield higher

impro v emen ts in recognition rates. One p ossible explanation for this phenomenon is

the complexit y of the lik eliho o d function. T o understand this phenomenon b etter, the

maxim um lik eliho o d v alues, to whic h the oracle-LIMABEAM algorithm con v erges,

should b e tak en in to accoun t. It is not practical to include the exact n um b ers here,

but w e men tion some observ ations b elo w.

The oracle-LIMABEAM algorithm mostly con v erges to smaller lik eliho o d v alues

with increasing n um b er of �lter taps. This fact assures that the algorithm most of

the time con v erges to lo cal maxima, as a greater lik eliho o d v alue could already b e

found for shorter �lters (consider padding the shorter �lters with zeros instead of op-

timizing longer �lters). W e can then safely claim that increasing the n um b er of �lter

taps in this setup c hanges the lik eliho o d function suc h that the oracle-LIMABEAM

algorithm mostly con v erges to smaller lik eliho o d v alues with longer �lters. Ho w ev er,

the b eha vior of the algorithm migh t c hange in di�eren t en vironmen ts and with dif-

feren t recognizers b ecause of c hanging acoustic conditions and di�eren t recognizer

con�gurations (i.e mo del parameters, recognition task). Another p ossible explana-
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tion for this phenomenon is the lac k of enough optimization data. This p ossibilit y

is discussed in Section 6.3.2 using the oracle-LIMABEAM algorithm in microphone

arra y con�gurations.

6.3.1.6 Exp erimen t in the MMR En vironmen t

The last exp erimen t with a single microphone w as p erformed using a measured ro om

impulse resp onse from the MMR en vironmen t. F or this setup, clean sp eec h signals

w ere con v olv ed with the RIR corresp onding to the cen tral sp eak er p osition (P os.1)

and third microphone (Mic: 3) of Figure 6.2.

A ccording to T able 6.1, the oracle-LIMABEAM is not able to yield an y impro v e-

men ts in this test setup. W ord accuracy rates sho w that there is a sligh t degrada-

tion in ASR p erformance with the oracle-LIMABEAM (ab out 1%). Although this

amoun t of degradation is not signi�can t, it is still unexp ected. As ab o v e, the lik e-

liho o d v alues to whic h the algorithm con v erges should b e considered. These v alues

sho w that the algorithm is able to increase the lik eliho o d in the log mel sp ectral

domain, ho w ev er fails to impro v e recognition p erformance unexp ectedly .

As describ ed in the previous c hapter, optimization of the arra y parameters is

p erformed in the log mel sp ectral domain, while recognition is still done in the

MF CC domain. The recognition rates in the log mel sp ectral domain should also b e

considered to understand the relation b et w een the lik eliho o d v alues and the recog-

nition rates. Therefore, w e p erformed an additional recognition with the optimized

�lters in the log mel sp ectral domain. In con trast to the MF CC domain recogni-

tion, the oracle-LIMABEAM is able to impro v e the w ord accuracy from 53.02% to

58.57% in the log mel sp ectral domain. This result con�rms that ASR p erformance

is indeed impro v ed up to some amoun t in the optimization domain. Ho w ev er this

impro v emen t is not re�ected in to the MF CC domain. One p ossible explanation for

this phenomenon is that the oracle-LIMABEAM emphasizes some frequency com-

p onen ts whic h are imp ortan t for the log mel sp ectral domain but not for the MF CC

domain.
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6.3.2 Exp erimen ts with Microphone Arra ys

Running the LIMABEAM o v er a single microphone as ab o v e ob viously do es not lead

to an y b eamforming, as there is no spatial �ltering. F rom no w on, w e concen trate

on microphone arra ys in order to enable b eamforming. The exp erimen ts whic h w ere

p erformed in the t w o di�eren t en vironmen ts, ILMENA U and MMR, are discussed

in the next sections. The test data set testset 90 w as used for testing, unless the

other data set testset 30 is men tioned explicitly .

6.3.2.1 Exp erimen ts in the ILMENA U En vironmen t

F or the exp erimen ts in the ILMENA U en vironmen t, RIRs corresp onding to all mi-

crophones in Figure 6.1 w ere con v olv ed with clean sp eec h to obtain a setup with an

arra y of eigh t microphones and ro om rev erb eration only . The �rst exp erimen t w as

p erformed with the dataset testset 90 and rep eated for di�eren t n um b er of �lter

taps p er microphone. The w ord accuracy rates obtained in these exp erimen ts are

giv en in Figure 6.12 in comparison with the DSB ha ving the same microphone ar-

ra y structure. The �gure clearly sho ws that the oracle-LIMABEAM is sup erior to

the DSB. With 5 �lter taps, the oracle-LIMABEAM algorithm yields 28% relativ e

impro v emen t o v er the DSB in w ord accuracy , and a 41% relativ e reduction in w ord

error rates.

Figure 6.12 sho ws that the p erformance using the oracle-LIMABEAM decreases

with increasing n um b er of �lter taps as in the case of one microphone (Section

6.3.1.5). One p ossible explanation, complexit y of the lik eliho o d function w as al-

ready discussed in Section 6.3.1.5. Another p ossible explanation is lac k of enough

optimization data. If sp eec h signals used for optimization are to o short for optimiz-

ing longer �lters, optimization with more �lter taps migh t yield w orse results. In

order to ev aluate the optimization p erformance with resp ect to the length of the

optimization utterance, w e used the second dataset testset 30 (Section 6.2.2) whic h

con tain signals obtained b y concatenating three utterances. Figure 6.13 sho ws the

recognition results with b oth datasets. Ob viously increasing the length of the opti-
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Figure 6.12: ASR p erformance using the oracle-LIMABEAM with eigh t microphones

in the ILMENA U en vironmen t with the testset 90 vs. �lter taps
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T est Setup

No. taps b efore

expansion

No. taps after

expansion

W ord

A ccuracy

Oracle-LIMABEAM 5 - 76.03%

Oracle-LIMABEAM 10 - 74.13%

Oracle-LIMABEAM 20 - 70.00%

Expanded oracle-LIMABEAM 5 10 74.76%

Expanded oracle-LIMABEAM 10 20 73.81%

T able 6.2: ASR p erformance using the expanded oracle-LIMABEAM. Ro ws where

'No. taps after expansion' column con tains a '-' sho w the ASR p erformance using

the oracle-LIMABEAM with 'No. taps b efore expansion' �lter taps for comparison.

mization utterance do es not increase the p erformance of the system in this setup.

In order to o v ercome the degradation with longer �lters, the optimization w as

also run b y exp anding the already optimized shorter �lters. Here, expanding means

setting the initial �lter taps b efore optimization to the ones whic h are obtained

b y padding the already optimized short �lters with zeros. W e denote this test as

exp ande d oracle-LIMABEAM. F or example, w e pad optimized �lters with 5 taps

with 5 zeros and run the optimization with these initial �lters of 10 taps. This

exp erimen t w as also rep eated from 10 to 20 taps. T able 6.2 sho ws the results of

these exp erimen ts together with the results of the con v en tional oracle-LIMABEAM

v ersion. Although w ord accuracy of the expanded oracle-LIMABEAM from 5 to 10

taps (74.76%) is higher than that of the oracle-LIMABEAM with 10 taps (74.13%),

it is still b elo w the oracle-LIMABEAM with 5 taps (76.03%). A similar result is

also observ able for 20 taps. Th us, w e still obtain the b est p erformance using the

con v en tional oracle v ersion with 5 �lter taps.

Next, w e compare the p erformance using the oracle-LIMABEAM with resp ect

to the n um b er of microphones used. In fact, the oracle-LIMABEAM already giv es

b etter results with one microphone than with eigh t microphones. Comparing Fig-
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Figure 6.14: ASR p erformance with the oracle-LIMABEAM vs. n um b er of micro-

phones. Single microphone con�guration is also sho wn under the lab el of DSB with

one microphone for simplicit y , although one microphone is ob viously not a DSB

con�guration.

ures 6.11 and 6.12, the p erformance using the oracle-LIMABEAM with a single

microphone is sligh tly ab o v e that with eigh t microphones. A dditionally , the p erfor-

mance of the DSB with eigh t microphones is also b elo w the p erformance of a single

microphone without LIMABEAM. T o in v estigate the e�ect of the n um b er of arra y

elemen ts o v er the oracle-LIMABEAM, the exp erimen ts w ere run using 1,2,4 and 8

microphones and 10 �lter taps. The results are sho wn in Figure 6.14

3

. Clearly , no

gain is obtained in this exp erimen tal setup b y increasing the n um b er of microphones

for b oth the LIMABEAM and DSB con�gurations. F or eac h microphone arra y con-

�guration, the oracle-LIMABEAM algorithm yields appro ximately the same amoun t

of gain o v er the DSB. Ho w ev er, w e migh t still exp ect the oracle-LIMABEAM could

p erform b etter with microphone arra ys in di�eren t en vironmen ts.

The next exp erimen t in the ILMENA U en vironmen t using the oracle-

LIMABEAM w as p erformed to in v estigate if some adaptive optimization w ould yield

impro v emen ts in ASR p erformance. F or that reason the �lter taps w ere initialized

3

In Figure 6.14, single microphone con�guration is also sho wn under the lab el of DSB with a

single microphone for simplicit y , although one microphone is ob viously not a b eamformer.
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T est Setup No. taps W ord A ccuracy

DSB - 59.37%

Oracle-LIMABEAM 10 74.03%

Oracle-LIMABEAM 20 70.00 %

A daptiv e oracle-LIMABEAM -

sp eak er-indep enden t

10 71.59%

A daptiv e oracle-LIMABEAM -

sp eak er-indep enden t

20 66.67%

A daptiv e oracle-LIMABEAM -

sp eak er-dep enden t

10 70.95%

T able 6.3: ASR p erformance of the adaptiv e oracle-LIMABEAM. ASR p erformance

using the oracle-LIMABEAM and DSB are also giv en for comparison.

to the DSB con�guration for the �rst utterance, the optimization sc hema w as run

as usual and the optim um arra y parameters w ere computed. These optimized arra y

parameters w ere then used as initial �lter con�guration for the second utterance. In

that manner, for eac h optimization, �lters w ere initialized to the ones whic h ha v e

b een optimized for the previous utterance. This exp erimen t w as �rst p erformed in a

sp e aker-indep endent manner b y considering the whole set of sp eec h utterances one

after another. W e rep eated the exp erimen t in a sp e aker-dep endent w a y b y breaking

the test set in to subsets, whic h include sp eec h utterances only from the same sp eak er,

to in v estigate the e�ects of sp eak er v ariabilit y . T able 6.3 sho ws the results of this

so-called adaptive oracle-LIMABEAM algorithm together with the results from the

con v en tional oracle v ersion and DSB pro cessing. The p erformance of the adaptiv e

v ersion yields a signi�can t impro v emen t o v er DSB, ho w ev er it is b elo w the con-

v en tional oracle-LIMABEAM for b oth sp eak er-dep enden t and sp eak er-indep enden t

cases. This indicates that the optimization is �rst of all dep enden t on the v ery utter-

ance, i.e. the �lters optimized for the v ery utterance are not that e�cien t for other
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Figure 6.15: ASR p erformance using the oracle-LIMABEAM with resp ect to rev er-

b eration time. (a) sho ws the w ord accuracy rates of the exp erimen ts. F or simplicit y ,

w ord accuracy rates with DSB w ere also sho wn as part of the oracle-LIMABEAM

curv es with x-axis lab el 'DSB'. (b) depicts the relativ e reductions in w ord error

rates.

utterances, although the acoustics conditions in this test scenario are not dynamic.

Second, the algorithm seems not to dep end on the sp eak er to a high degree for a

sp eak er-indep enden t system, as the sp eak er-dep enden t and -indep enden t adaptiv e

v ersions yield appro ximately the same p erformance.

The last exp erimen t in the ILMENA U en vironmen t w as p erformed to in v estigate

the e�ects of di�eren t rev erb eration times on the oracle-LIMABEAM algorithm. F or

this purp ose, the a v ailable set of RIRs, whic h ha v e rev erb eration times of ab out 700

milliseconds, w ere m ultiplied with exp onen tial w eigh ting functions and three other

RIR sets w ere obtained with rev erb eration times of 200, 400 and 600 milliseconds.

Figure 6.15(a) sho ws the w ord accuracy rates obtained with these RIR sets and

Figure 6.15(b) depicts the relativ e reductions in w ord error rates with resp ect to the
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w ord error rates of the DSB with eac h sp eci�c rev erb eration time and the n um b er

of �lter taps whic h yields the b est con�guration for eac h rev erb eration time. ASR

p erformance with the DSB pro cessing clearly increases with decreasing amoun t of re-

v erb eration, i.e. decreasing rev erb eration time, and the oracle-LIMABEAM is b etter

than the DSB pro cessing in all setups. Ho w ev er, w e observ e that the amoun t of im-

pro v emen t o v er DSB decreases with the rev erb eration time. The reason is most prob-

ably the fact that the oracle-LIMABEAM algorithm do es not kno w whic h frames

are wrongly lab eled. In case of 200 milliseconds rev erb eration time, 91.4% of the

digits are already correctly lab eled. The oracle-LIMABEAM algorithm, whic h can

not di�eren tiate the correctly lab eled frames from the others, attempts to increase

the total log-lik eliho o d, emphasizing the lik eliho o d of the correctly lab eled frames.

Ho w ev er, increasing the lik eliho o d of the already correctly lab eled frames do es not

increase the recognition rates. Th us, the gain through the algorithm degrades when

the ASR p erformance without the algorithm is already quite high.

After �nishing the discussion of the ASR results of the exp erimen ts in the IL-

MENA U en vironmen t, w e in v estigate the �lters optimized b y the algorithm. Figures

6.16 and 6.17 depict the b eampatterns obtained with the DSB con�guration of the

ILMENA U en vironmen t and with the FSB ha ving arra y parameters optimized b y

the oracle-LIMABEAM algorithm with 5 taps for the utterance '5376869' in the

ILMENA U en vironmen t. The main di�erences b et w een the t w o b eampatterns are

the c hanges in the gain of the main b eam. The LIMABEAM algorithm pro vides

fr e quency shaping , emphasizing some frequency comp onen ts and atten uating some

others. The atten uation is mostly visible at the frequencies lo w er than 400 kHz.

Although this b eampattern do es not seem to b e v ery meaningful, it increases the

n um b er of correctly recognized digits in the utterance '5376869' from 3 to 6. In fact,

LIMABEAM algorithm do es not explicitly set an y condition on the b eampatterns

[1 ], hence w e can not exp ect v ery meaningful b eampatterns. Ab o v e, w e also stated

that b eamforming do es not result in an y impro v emen t in the ILMENA U en viron-

men t (see Figure 6.14), at least with the curren t arra y con�guration. This frequency
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Figure 6.16: Beampattern of the DSB con�guration in the ILMENA U en vironmen t
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Figure 6.17: Beampattern obtained from the oracle-LIMABEAM algorithm with 5

taps for the utterance '5376869'
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shaping e�ect with 8 microphones is not v ery surprising in this exp erimen t, as the

algorithm already leads to higher recognition rates with a single microphone. More-

o v er, existence of only ro om rev erb eration mak es the ev aluation of the b eampatterns

more di�cult. First, w e do not kno w propagation dela ys and arriv al directions of

the ec ho es. Second, the ec ho es are atten uated and dela y ed v ersions of the desired

sp eec h, hence w e can not guess up to whic h exten t they should b e remo v ed from

the signal. In con trast, kno wn the direction of arriv al of an additiv e noise signal,

LIMABEAM is exp ected to atten uate the input from the corresp onding direction.

In order to understand the e�ects of the b eampattern in Figure 6.17 on the ut-

terance '5376869', the log mel sp ectral co e�cien ts are to b e considered. These are

depicted in Figure 6.18, where all the plots are mapp ed to the same color scale

for easy comparison. Figures 6.18(a) and 6.18(b) depict the log mel sp ectral co e�-

cien ts of the clean sp eec h signal '5376869' and of the single microphone recording

in the ILMENA U en vironmen t, resp ectiv ely . The e�ects of the ro om rev erb eration

are clearly visible in the log mel sp ectrum of the single microphone recording. Fig-

ure 6.18(c) sho ws the log mel sp ectrum after the con v en tional DSB pro cessing. As

exp ected from the recognition results, w e can hardly observ e an y di�erence b et w een

the sp ectra computed from the single microphone signal and from the DSB output.

Figure 6.18(d) is the log mel sp ectrum of the signal after the oracle-LIMABEAM

pro cessing with �v e taps. W e observ e that some of the sme aring e�ects of the ro om

rev erb eration are comp ensated b y the algorithm. This observ ation clearly indicates

that the oracle-LIMABEAM pro vides a de-r everb er ation , in addition to the frequency

shaping.

Figure 6.19 sho ws the frequency resp onses of the ILMENA U en vironmen t with

the DSB (blue) and the oracle-LIMABEAM (red) pro cessing. F or the DSB con�gu-

ration, the measured RIRs of particular microphones w ere dela y ed according to the

v alues found b y the time-dela y estimation and summed b efore computing the fre-

quency resp onse. F or the LIMABEAM case, the measured RIRs w ere �ltered with

the asso ciated �lters. The frequency resp onse w as computed from the summation of
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Figure 6.18: Log mel sp ectral co e�cien ts of the utterance '74o8o12' in the ILMENA U

en vironmen t computed (a) from clean sp eec h signal (b) from single microphone

recording (c) after DSB pro cessing (d) after the oracle-LIMABEAM pro cessing. All

plots ha v e the same color scale.
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Figure 6.19: F requency resp onses from the ILMENA U en vironmen t using DSB and

LIMABEAM con�gurations. The dashed gra y line sho ws single microphone input

for comparison.
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Figure 6.20: Energy deca y curv es of the ILMENA U en vironmen t using the DSB and

LIMABEAM con�gurations. The dashed gra y line sho ws single microphone input

for comparison.
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these. Filters with 5 taps, whic h w ere optimized for the utterance '5376869', w ere

c hosen for the plot. The frequency resp onse computed from a single c hannel of the

RIR set in the ILMENA U en vironmen t is also sho wn with the dashed gra y line for

comparison. The �gure states that the DSB pro cessing do es not c hange the fre-

quency resp onse of the en vironmen t except a small amoun t of atten uation at high

frequencies, whic h is the p oten tial reason for the sligh t degradation of the ASR p er-

formance with the DSB. In con trast to the DSB, the oracle-LIMABEAM someho w

'�attens' the frequency resp onse at lo w frequencies, b y esp ecially atten uating the

�rst p eak (whic h is at ab out 100-200Hz) ab out 10 dB. This phenomenon explains

the lo w gain at lo w frequencies in Figure 6.17. The oracle-LIMABEAM also has a

sligh t gain o v er the DSB in the mid-frequency band, 3-8kHz. Despite the atten uation

at the high frequency band, 8-10kHz, still exists, the oracle-LIMABEAM is able to

pro vide signi�can t impro v emen ts in ASR p erformance. In fact, lo w frequencies are

more imp ortan t for sp eec h recognition as most of the sp eec h energy is concen trated

in these bands, hence the algorithm yields signi�can t impro v emen ts.

Finally , w e observ e the energy deca y curv es of the ILMENA U en vironmen t. The

energy deca y curv es, whic h are depicted in the Figure 6.20, w ere computed from

the signals whic h w ere obtained in the same manner as the frequency resp onses

ab o v e. The �gure clearly sho ws that the DSB pro cessing do es not c hange the energy

deca y of the ILMENA U en vironmen t, ho w ev er the energy deca y after the oracle-

LIMABEAM pro cessing is sligh tly faster than b oth of the other t w o cases un til 0.4

seconds. The corresp onding decrease in the rev erb eration time is not signi�can t, but

this observ ation still indicates some sligh t de-r everb er ation .

The in v estigation of the optimized �lters sho ws us that the gain whic h is ob-

tained b y the oracle-LIMABEAM algorithm in this en vironmen t do es not mostly

dep end on b eamforming, but someho w on fr e quency shaping . Ho w ev er, in di�eren t

en vironmen ts b eamforming is still exp ected to increase the p erformance of the al-

gorithm. Existence of additiv e noise sources should esp ecially increase the e�ciency

of using the LIMABEAM algorithm with microphone arra ys.
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Figure 6.21: ASR p erformance using the oracle-LIMABEAM in the MMR en viron-

men t using an arra y of 6 microphones

6.3.2.2 Exp erimen ts in the MMR En vironmen t

In addition to the exp erimen ts in the ILMENA U en vironmen t, the oracle-

LIMABEAM w as also tested with 6 microphones using the RIR set from the MMR

en vironmen t (see Section 6.2.3.2 for details of the MMR en vironmen t). Figure 6.21

sho ws the w ord accuracy rates obtained b y applying the oracle-LIMABEAM pro-

cessing in this en vironmen t with b oth of the datasets. F or comparison, ASR rates

with the DSB are also giv en as part of the curv es with the x-axis lab el 'DSB'. In v es-

tigation of the results indicates that the oracle-LIMABEAM could not lead to an y

impro v emen ts in this test scenario. In fact, these results are similar to those of the

tests with a single microphone (Section 6.3.1.6). The oracle-LIMABEAM algorithm

yields sligh tly b etter recognition results in the log mel sp ectral domain, increasing

the w ord accuracy from 55(%) up to 60(%) p ercen t. Ho w ev er, this impro v emen t is

not re�ected to the MF CC domain as in the single microphone case.

One other observ ation is the relation b et w een the ASR p erformance and the

length of the optimization sequence. In the ILMENA U en vironmen t, w e sa w that

increasing the length of the sp eec h utterances has an adv erse e�ect on the ASR p er-

formance, ho w ev er in this en vironmen t longer utterances yield sligh tly b etter results.
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Figure 6.22: F requency resp onses from the MMR en vironmen t with DSB and

LIMABEAM con�gurations. The dashed gra y line sho ws single microphone input

for comparison.

As the test data in eac h case w ere generated from the same clean sp eec h signals,

this con tro v ersy is most probably b ecause of di�eren t rev erb eration c haracteristics

of the t w o en vironmen ts.

Figure 6.22 sho ws the frequency resp onses of the oracle-LIMABEAM, DSB and

single microphone con�gurations. F requency resp onses w ere calculated similar to the

ILMENA U case, i.e. b y dela ying and summing the RIRs for the DSB case (blue), and

con v olving RIRs with the asso ciated �lters and summing for the oracle-LIMABEAM

case (red). Filters with �v e taps, whic h w ere optimized for the sp eec h utterance

'24z982z' w ere considered for the plot. Single c hannel (dashed gra y) corresp onds to

the frequency resp onse of the en vironmen t without an y pro cessing. In con trast to

the ILMENA U case, no stable �attening e�ect is presen t in the plot. Lo w frequencies

are unexp ectedly emphasized and the large gain at the 5-7 kHz region could not b e
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Figure 6.23: Energy deca y curv es of the MMR en vironmen t with the DSB and

LIMABEAM con�gurations. The dashed gra y line sho ws single microphone input

for comparison.

atten uated.

Figure 6.23 sho ws the energy deca y curv es of the signals whic h ha v e b een calcu-

lated to plot the ab o v e frequency resp onses. The energy deca ys on all cases are v ery

close to eac h other, as exp ected from the recognition results.

In ligh t of the results ab o v e, w e conclude that the oracle-LIMABEAM is not

able to e�cien tly comp ensate the adv erse e�ects of ro om rev erb eration in the MMR

en vironmen t. There is no impro v emen t in the ASR p erformance in MF CC domain.

Although there is a sligh t impro v emen t in the log mel domain, the recognition rates

in this domain are still incomparably lo w er than those in the MF CC domain.

6.3.2.3 Exp erimen ts in the MMR En vironmen t with A dditiv e Noise

A ddition of a noise source to the test setup has some b ene�ts for ev aluating the

b eampatterns. Once the direction of arriv al corresp onding to the noise source is

kno wn, LIMABEAM is exp ected to atten uate the comp onen ts coming from this

direction. F or this purp ose, a noise source w as added to the MMR en vironmen t at

p osition 2 (Figure 6.2, P os.2) while the sp eak er w as k ept at p osition 1. The direction
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Figure 6.24: PSD of the noise source

of arriv al for the noise source on this setup is 30

�
(with resp ect to the arra y normal.)

The PSD of this noise source is giv en in Figure 6.24. This amoun t of distortion

corresp onds to an a v erage SNR of 11.6dB throughout the testset 90 .

The w ord accuracy rates obtained using the oracle-LIMABEAM algorithm with

an arra y of six microphones under these circumstances are sho wn in Figure 6.25.

The results of the exp erimen t sho w that the oracle-LIMABEAM algorithm yields

signi�can t impro v emen ts with 5 and 10 taps, ho w ev er ASR p erformance is degraded

when the n um b er of �lter taps exceeds 10. This is similar to the results in the

ILMENA U en vironmen t, ho w ev er here w e observ e a dramatic degradation of ASR

p erformance, whic h is sometimes ev en w orse than that of the DSB. F or example, the

recognition rates are decreased 15% relativ ely with 75 taps, ev en falling 5% b elo w

the recognition rates with the con v en tional DSB pro cessing. The reasons of this

phenomenon are unclear.

Similar to the ILMENA U case, w e also in v estigate the p erformance using the

oracle-LIMABEAM with a single microphone in this en vironmen t. T able 6.4 sho ws

the ASR p erformance with one and six microphones. In con trast to the ILMENA U

case, where the distortion is only ro om rev erb eration, the p erformance using the

oracle-LIMABEAM with microphone arra ys is ab out 5% b etter than that with a

single microphone, although DSB pro cessing still do es not result in an y gain. This
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Figure 6.25: ASR p erformance using the oracle-LIMABEAM with additiv e noise in

the MMR en vironmen t

result states that the oracle-LIMABEAM can pro�t from microphone arra ys b y

exploiting the spatial separation dep ending on the en vironmen t. Existence of a noise

source, whic h is spatially separate from the desired source of sp eec h, enhances this

pro�t as in this test setup.

T est Setup No. taps No. Mics W ord A ccuracy

Single microphone input - 1 76.35%

Oracle-LIMABEAM 5 1 80.48%

Oracle-LIMABEAM 10 1 77.94%

DSB - 6 75.87%

Oracle-LIMABEAM 5 6 85.87%

Oracle-LIMABEAM 10 6 84.13%

T able 6.4: ASR p erformance using the oracle-LIMABEAM with di�eren t n um b er

of microphones in the MMR en vironmen t with additiv e noise. ASR p erformances

using the DSB with six microphones and using the unpro cessed single microphone

recording are also sho wn for comparison.

94



CHAPTER 6. TEST RESUL TS AND EV ALUA TION

DOA (deg)

F
re

qu
en

cy
 (

H
z)

-90 -60 -30 0 30 60 90
0

2000

4000

6000

8000

10000

-40

-35

-30

-25

-20

-15

-10

-5

Figure 6.26: Beampattern obtained using the oracle-LIMABEAM algorithm for the

utterance '6924z63' with 5 taps p er microphone.

The b eampatterns whic h are to b e obtained in this scenario are exp ected to at-

ten uate the noise comp onen ts, whic h arriv e from 30

�
. Figure 6.26 sho ws the b eam-

pattern obtained for the utterance '6924z63' with 5 taps. The oracle-LIMABEAM is

indeed able to atten uate some of the input comp onen ts from 30

�
. The atten uation is

clearly visible from 1kHz to 4kHz. The PSD of the noise source (Figure 6.24) sho ws

that its energy is concen trated at frequencies lo w er than 4kHz. Hence, most of the

distortion is atten uated b y this b eampattern. Ho w ev er, the atten uation in the fre-

quency band up to 1kHz is v ery lo w compared to the frequency band b et w een 1 and

4kHz, although the energy concen tration of the noise source in this band is higher

than the 1-4 kHz band. This is b ecause of the kno wn restricted directionalit y of

microphone arra ys with small ap erture at lo w frequencies as men tioned in Chapter

4. Because of the large w a v elength at lo w frequencies, larger arra ys are necessary to

obtain b etter directionalit y . W e b eliev e that is wh y the oracle-LIMABEAM is not

able to atten uate this lo w frequency band prop erly .

Finally , the log mel sp ectrum feature v ectors computed in this en vironmen t are
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Figure 6.27: Log mel sp ectral co e�cien ts of the utterance '6924z63' in the MMR

en vironmen t with additiv e noise computed (a) from clean sp eec h signal (b) from sin-

gle microphone recording (c) after DSB pro cessing (d) after the oracle-LIMABEAM

pro cessing. All plots ha v e the same color scale.
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sho wn in Figure 6.27, where the plots are mapp ed to the same color scale for b etter

comparison. Figures 6.27(a) and 6.27(b) sho w the feature v ectors computed from the

clean sp eec h signal '6924z63' and from the signal recorded b y a single microphone in

this en vironmen t. The e�ects of additiv e noise and rev erb eration are clearly visible

in the plots. Figure 6.27(c) depicts the feature v ectors after DSB pro cessing with 6

microphones. W e observ e that DSB pro cessing atten uates some of the noise energy

only on a limited frequency band. In fact, this pro cessing do es not lead to an y gain in

terms of recognition rates. Finally , the feature v ectors with the oracle-LIMABEAM

pro cessing are illustrated in Figure 6.27(d). Clearly , the oracle-LIMABEAM atten-

uates most of the noise energy . The sp eec h energy is also atten uated up to some ex-

tend. In spite of this atten uation, ASR p erformance is impro v ed signi�can tly . Hence,

w e think that this amoun t of degradation of sp eec h energy is somewhat tolerable.

6.3.3 Summary of Results Using the Oracle-LIMABEAM

In this section w e discussed the recognition results using the oracle-LIMABEAM

algorithm. The recognition rates sho w that arra y pro cessing with the goal of maxi-

mizing the lik eliho o d can lead to signi�can t impro v emen ts in ASR p erformance, as

already indicated b y Seltzer [1]. In most scenarios, the recognition rates obtained us-

ing the oracle-LIMABEAM pro cessing are signi�can tly b etter than the recognition

rates obtained using the con v en tional DSB metho d.

The results of the exp erimen ts with one microphone sho w that the algorithm is

able to yield signi�can t impro v emen ts ev en with a single microphone. Exp erimen tal

results with simple �lters indicate that the algorithm can comp ensate most e�ects

of con v olutional distortion, although not en tirely , under man y circumstances. Ev en

with long and complicated RIRs, the algorithm leads to signi�can t impro v emen ts

using a single microphone.

The recognition rates using the oracle-LIMABEAM with microphone arra ys are

also mostly b etter thab the con v en tional DSB pro cessing. W e sa w that the gain

through the incorp oration of microphone arra ys in to the oracle-LIMABEAM sc hema
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dep ends on the en vironmen tal conditions. Esp ecially in additiv e noise scenarios spa-

tial �ltering abilit y of microphone arra ys increases the p erformance of the algorithm.

W e also observ ed that increasing the n um b er of arra y parameters degrades the

p erformance of the algorithm. W e think that this phenomenon dep ends on the

conjugate-gradien t based maximization of the lik eliho o d. This optimization metho d

con v erges to di�eren t v alues with c hanging initial conditions, hence the lik eliho o d

function is supp osed to ha v e a n um b er of lo cal maxima. Although this fact indi-

cates that the optimization mostly con v erges to a lo cal maxima, the algorithm still

yields signi�can t impro v emen ts. Moreo v er, con v ergence prop erties of the conjugate-

gradien t metho d can c hange with the lik eliho o d function, whic h is strongly related

to the test conditions. Therefore, in di�eren t test conditions, i.e. di�eren t ASR sys-

tems, tasks, acoustic conditions or test data, this b eha vior is sub ject to c hange. In

[1 ], M. Seltzer sho w ed that the p erformance of the algorithm migh t increase with

longer �lters on other testing conditions.

Ob viously , the oracle-LIMABEAM algorithm dep ends on the oracle state se-

quence, whic h is estimated using the correct transcription of the sp eec h utterance

and the sp eec h feature v ectors computed from the corresp onding non-distorted

sp eec h signal. As this or acle information is not a v ailable in real scenarios, this v er-

sion of LIMABEAM is only theoretically imp ortan t. In the follo wing sections, w e

discuss the ASR p erformance using other v ersions of the algorithm, whic h are ap-

plicable to real scenarios and in v estigate ho w the loss of or acle assumption c hanges

the p erformance of the algorithm.

6.4 Exp erimen ts Using the Calibrated-

LIMABEAM

The oracle-LIMABEAM algorithm assumes that the correct transcription of the

sp eec h signal and the sp eec h feature v ectors computed from the corresp onding non-

distorted sp eec h signal are kno wn a priori. This assumption ob viously do es not
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hold in practical conditions. One solution to this problem is to calibrate the arra y

parameters for a sp eec h signal with kno wn transcription and use these parameters for

the rest of the input sp eec h. The correct transcription of the calibration utterance

is kno wn, ho w ev er the clean sp eec h features are not accessible. Hence, the state

sequence is optimized with the sp eec h features computed from the distorted input

signal.

The calibrated-LIMABEAM algorithm w as tested in the t w o test en vironmen ts,

ILMENA U and MMR, only with microphone arra ys. In the rest of this section, the

results of these tests are discussed.

6.4.1 Exp erimen ts in the ILMENA U En vironmen t

The calibrated-LIMABEAM algorithm w as run in the ILMENA U en vironmen t with

8 microphones. The �rst exp erimen t w as p erformed using the testset 90 . This set

consists of 9 utterances from 10 sp eak ers. One utterance from eac h sp eak er w as

c hosen as the calibration utterance and the calibrated �lters w ere used to pro cess

the other 8 utterances from that sp eak er. Hence, the test set, in this case, con-

sists of 80 utterances. This test w as completed after �nishing a single iteration of

calibration ( i.e. without an y additional iterations). In other w ords, for eac h calibra-

tion sequence, the state sequence w as optimized using the correct transcription and

sp eec h features w ere computed from the recorded signal. The arra y parameters w ere

optimized using these state sequence and feature v ectors and then the rest of the

input sp eec h w as pro cessed with these arra y parameters. ASR p erformance after

this calibration pro cess (green) is sho wn in Figure 6.28. The recognition rates using

the oracle-LIMABEAM pro cessing (red) are also sho wn for comparison. Although

the calibrated-LIMABEAM is sup erior to the DSB (blue), the recognition rates are

w ell b elo w the oracle v ersion.

One prop osal to increase the robustness of the calibrated-LIMABEAM algorithm

is using longer calibration utterances [1]. If there is not enough calibration data,

the algorithm su�ers from o v er-�tting of the arra y parameters to the calibration
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Figure 6.28: ASR p erformance using the calibrated-LIMABEAM in the ILMENA U

en vironmen t with an a v erage calibration utterance length of 3 seconds
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Figure 6.29: ASR p erformance using the calibrated-LIMABEAM in the ILMENA U

en vironmen t with an a v erage calibration utterance length of 9 seconds
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utterance, whic h degrades the ASR p erformance with other utterances. F or this

purp ose, the calibration pro cess w as rep eated with longer utterances whic h w ere

obtained b y concatenating three utterances from eac h sp eak er. This concatenation

increases the a v erage length of the calibration utterances from 3 to 9 seconds. The

test set, in this case, is reduced to 60 utterances. The results with these longer

calibration utterances (green) are giv en in Figure 6.29. The c hanges in the oracle-

LIMABEAM (red) and DSB (blue) p erformances are b ecause of the di�erences in

the size of test data. The p erformance of the algorithm is impro v ed b y increasing the

length of calibration utterances. With longer utterances, the p erformance using the

calibrated-LIMABEAM is closer to the oracle-v ersion. The relativ e reduction in the

w ord error rate with 20 taps is ab out 21.9%. W e no w observ e that the calibrated-

LIMABEAM p erforms b etter with longer �lters. This sho ws that longer �lters can

b e more e�cien tly calibrated with more data. F or the remaining exp erimen ts in this

section, these longer calibration utterances with 9 seconds of a v erage length w ere

used.

Ab o v e, w e assumed that the calibration pro cess dep ends on the sp eak er b y cali-

brating the arra y individually for eac h p erson. It is w orth to in v estigate if the p erfor-

mance of calibration really dep ends on the sp eak er in case of a sp eak er-indep enden t

recognition system

4

. F or this purp ose, the arra y parameters, whic h w ere calibrated

for eac h particular sp eak er ab o v e, w ere used for pro cessing the whole test set and

the a v erage of the results w as considered. Figure 6.30 depicts the results of this

exp erimen t. W ord accuracy rates with sp eak er-indep enden t calibration (green) are

close to the rates with sp eak er-dep enden t calibration (red) esp ecially at 20 taps,

where the algorithm reac hes its highest p erformance. Therefore, w e migh t conclude

that the calibration pro cess do es not mostly dep end on sp eak ers, as so on as the

sp eak er p ositions are more or less the same

5

and the recognition system is sp eak er-

4

The training data w as c hosen to dev elop a sp eak er indep enden t recognizer for American En-

glish.

5

As the test data is syn thetically generated, sp eak ers are exactly at the same p osition in our

case.
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Figure 6.30: Dep endence of the calibrated-LIMABEAM on the sp eak er.

indep enden t.

In Chapter 5, w e men tioned that calibration migh t b e iterated un til the lik eliho o d

con v erges. After the �rst optimization of arra y parameters (�rst iteration), a new set

of sp eec h features are calculated with the new set of arra y parameters, a new state

sequence is computed with these new feature v ectors and the arra y parameters are

optimized using these new features and state sequence. This mak es up an additional

iteration. During the optimization of arra y parameters with additional iterations,

the arra y parameters migh t b e initialized to sev eral con�gurations. In this w ork, w e

initialized the arra y parameters either to the DSB con�guration similar to the �rst

iteration, or to the parameters computed b y the previous iteration.

Figure 6.31(a) sho ws the recognition results after additional iterations where the

�lters w ere initialized to the previously optimized v alues. Only 3 iterations w ere

considered as the recognition rates had already con v erged. The results indicate that

for lo w n um b er of taps, except 5 taps, the p erformance degrades with additional

iterations. The reason is most probably o v er-�tting of the short �lters to the cali-

bration sequence. It is not clear wh y additional iterations with 5 taps do not su�er

from o v er-�tting. The reason migh t b e that there are to o few parameters to b e opti-

mized, hence they can not o v er-�t the utterance, or that the lik eliho o d function with
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Figure 6.31: ASR p erformance using the calibrated-LIMABEAM in the ILMENA U

en vironmen t with additional iterations. F or additional iterations, the arra y param-

eters w ere initialized to (a) the previously optimized parameters (b) DSB con�gu-

ration.
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5 taps p er microphone is v ery simple so that optimization is more e�cien t. With

longer �lters, one additional iteration increases the ASR p erformance as they do not

su�er from o v er-�tting. Ho w ev er additional iterations with the b est con�guration of

50 taps (71.90%) can hardly exceed the p erformance of a single iteration with 20

taps (71.43%).

Recognition rates after additional iterations with the initial DSB con�guration

are sho wn in Figure 6.31(b). In these exp erimen ts, calibration w as also iterated three

times, as the third iteration had already resulted in a degradation of the recognition

p erformance as a result of o v er-�tting to the calibration data. The recognition rates

after the second iteration are sligh tly b etter than or equal to those after the �rst

iteration of calibration except �lters with 20 taps, ho w ev er the p erformance degrades

after the third iteration in con trast to the ab o v e case. W e b eliev e that this is b ecause

of the fact that initialization to DSB con�guration do es not k eep the information

ab out the �lters whic h are computed b y the previous iteration. The lac k of this

kno wledge increases the e�ects of o v er-�tting, as the additional iteration searc hes

the whole space once again.

6.4.2 Exp erimen ts in the MMR En vironmen t with A dditiv e

Noise

The calibrated-LIMABEAM algorithm w as �nally tested in the MMR en vironmen t.

Ho w ev er, the algorithm w as not tested in the pure rev erb eran t en vironmen t as the

oracle-LIMABEAM has already failed under this condition. Despite, the algorithm

w as tested with an additiv e noise source as in Section 6.3.2.3 in addition to the ro om

rev erb eration. In the ligh t of the results of the exp erimen ts using the calibrated-

LIMABEAM algorithm in the ILMENA U en vironmen t, this test w as only p erformed

with the longer calibration utterances, whic h consist of three concatenated utter-

ances. In con trast to the ILMENA U case, no additional iterations w ere p erformed

in this setup.

Figure 6.32 sho ws the recognition rates obtained using the calibrated-
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Figure 6.32: ASR p erformance using the calibrated-LIMABEAM in the MMR en vi-

ronmen t with additiv e noise

LIMABEAM algorithm in this en vironmen t. With �lters longer than 20 taps, the

algorithm leads to impro v emen ts o v er the con v en tional DSB con�guration. Highest

impro v emen ts are obtained with 30 and 75 �lter taps, where the oracle-LIMABEAM

fails to impro v e the ASR p erformance. This result indicates that the suc c ess of the

optimization dep ends on the utterance. The p erformance with the calibrated �lters

is ev en b etter than the p erformance with the oracle-LIMABEAM, where eac h ut-

terance is handled individually . In other w ords, calibrated �lters do �t the rest of

the sp eec h b etter than the �lters optimized for eac h utterance.

The recognition rates sho wn in Figure 6.32 migh t b e in terpreted as if there is

hardly an y impro v emen t in the ASR p erformance. Ho w ev er, the relativ e reduction

in w ord error rates of the recognizer should also b e considered. These indicate a

relativ e reduction of 14.9% in the w ord error rate with 30 taps. In the ILMENA U

case, the calibrated-LIMABEAM results in a relativ e reduction of 21.9%. Although

the impro v emen t in this test setup is less, w e ma y safely claim that the calibrated-

LIMABEAM algorithm leads to signi�can t reduction of the w ord error rates.
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6.4.3 Summary of Results Using the Calibrated-

LIMABEAM

The calibrated-LIMABEAM algorithm ac hiev es signi�can t impro v emen ts in the

ASR p erformance. W e sa w that the e�ciency of the algorithm increases with more

calibration data. Pro vided enough calibration data, the algorithm results reduces

the w ord error rates relativ ely 21.9% in the ILMENA U en vironmen t and 14.9% in

the MMR en vironmen t. These results indicate that the calibration pro cedure can

increase the ASR p erformance in practical situations.

A dditional iterations of the calibration pro cess in the ILMENA U en vironmen t

resulted in impro v emen ts in the ASR p erformance with longer �lters, ho w ev er sin-

gle iteration of calibration with 20 �lter taps is already as e�cien t as additional

iterations with longer �lters. In other w ords, in this test setup additional iterations

c hange the n um b er of �lter taps with whic h maxim um p erformance could b e ob-

tained. Nev ertheless, additional iterations migh t still increase the p erformance of

the algorithm in other en vironmen ts.

This calibration sc hema ob viously assumes that the acoustic en vironmen t do es

not c hange after the calibration pro cess. Otherwise, the calibrated arra y parameters

will not b e v alid for the future sp eec h inputs. Hence, there are still limitations

concerning the use of the algorithm.

6.5 Exp erimen ts using the Unsup ervised-

LIMABEAM

The ab o v e calibration sc hema is not suitable for en vironmen ts with c hanging acoustic

conditions, or where reading a calibration utterance is not desired. Instead of the

calibrated-LIMABEAM, an unsup ervised v ersion of the algorithm can b e used in

suc h en vironmen ts. The unsup ervised-LIMABEAM algorithm assumes no a priori

kno wledge of the sp ok en utterance. As the correct transcription is unkno wn, an
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estimated v ersion of the correct transcription, p ossibly con taining errors, is obtained

with the initial arra y parameters in order to optimize the state sequence according

to the sp eec h features whic h are computed from the microphone recordings. Once

the state sequence is optimized, arra y parameter optimization is p erformed as usual.

In this section, w e discuss the results of the exp erimen ts using the unsup ervised-

LIMABEAM in the ILMENA U and MMR en vironmen ts.

6.5.1 Exp erimen ts in the ILMENA U En vironmen t

The �rst exp erimen t using the unsup ervised-LIMABEAM w as p erformed in the

ILMENA U en vironmen t. The exp erimen t w as rep eated with 5, 10, 20, 30, 50, 75

and 100 �lter taps for b oth of the data sets, testset 90 and testset 30 , corresp onding

to an a v erage optimization utterance length of 3 and 9 seconds, resp ectiv ely . Figure

6.33 sho ws the w ord accuracy rates whic h w ere obtained in this exp erimen t. The

unsup ervised-LIMABEAM clearly impro v es the recognition rates with resp ect to

the con v en tional DSB. The w ord error rates are reduced relativ ely up to 18.3%.

Ho w ev er the ASR p erformance is w ell b elo w the oracle v ersion. Clearly , loss of the

oracle information has a signi�can t negativ e impact on the recognition rates.

In v estigation of the results in Figure 6.33 indicate that ASR p erformance is im-

pro v ed with longer optimization utterances. In this case, more optimization data

leads to b etter optimization results and higher recognition rates. In case of more

optimization data, the initial transcription con tains a higher n um b er of correctly la-

b eled data, hence optimization b ecomes more e�cien t. The algorithm w as also tested

with an a v erage optimization utterance length of 27 seconds

6

, ho w ev er the results

indicate no additional impro v emen ts and hence this con�guration is not sho wn in

the �gure. W e also see that the algorithm leads to the highest p erformance with 5

�lter taps similar to the oracle case. This phenomenon w as already discussed ab o v e

and th us it is not rep eated here. In the ligh t of this exp erimen t, all other exp erimen ts

in the ILMENA U en vironmen t w ere p erformed with the testset 30 .

6

These utterances w ere obtained b y concatenating three utterances from the testset 30
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Figure 6.33: ASR p erformance using the unsup ervised-LIMABEAM in the ILME-

NA U en vironmen t. Recognition rates with the oracle-LIMABEAM and DSB are also

giv en for comparison. F or these con�gurations, only the testset 90 is considered.

The unsup ervised-LIMABEAM algorithm can also b e iterated similarly to the

calibration pro cess. After the initial iteration of the algorithm, a b etter transcrip-

tion and state sequence are obtained with the optimized arra y parameters. These

are used for the second iteration of the arra y parameter optimization. The iteration

pro cess can b e rep eated un til the lik eliho o d con v erges. Ho w ev er, in this w ork, the

optimization w as iterated un til the recognition rates ha v e con v erged. During the

iteration pro cess, after the transcription and state sequence are obtained, the arra y

parameters migh t b e set to an y initial con�guration for conjugate-gradien t based

optimization of the arra y parameters. Similarly to the calibrated-LIMABEAM case,

t w o di�eren t initial conditions w ere considered for the additional iterations. The ar-

ra y parameters w ere initialized either to the con v en tional DSB con�guration similar

to the �rst iteration, or to the arra y parameters whic h w ere computed b y the pre-

vious iteration of the unsup ervised-LIMABEAM. T able 6.5 sho ws the recognition

rates obtained using additional iterations with these t w o di�eren t initializations.
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Algorithm No. T aps

No. Iteration

1 2 3 4

unsup ervised-LIMABEAM -

init. unsup ervised

5 66.67% 67.46% 67.62% -

unsup ervised-LIMABEAM -

init. DSB

5 66.67% 68.10% 69.05% 68.25%

oracle-LIMABEAM 5

76.03%

DSB -

59.21%

T able 6.5: ASR p erformance using the unsup ervised-LIMABEAM with m ultiple it-

erations in the ILMENA U en vironmen t. 'init. unsup ervised' denotes additional it-

erations where the �lter taps w ere initialized to the output of the previous iteration

and 'init. DSB' denotes initializations to the DSB. ASR p erformances using the DSB

and oracle-LIMABEAM are also giv en for reference.

W e observ e that the impro v emen t that can b e obtained b y additional iterations

dep ends on the initialization metho d. Initializing the �lter taps to the arra y parame-

ters whic h ha v e b een computed b y the previous iteration leads to some impro v emen ts

in the recognition rates, ho w ev er initialization of the arra y parameters to the DSB

con�guration results in signi�can tly b etter results. The relativ e reduction of the w ord

error rate is 18.3% after the �rst iteration. This is increased to 24.1% after the third

iteration with the initial DSB con�guration. W e observ e that the recognition rate

degrades after the fourth iteration. In fact, in v estigation of the log-lik eliho o d v al-

ues to whic h the unsup ervised-LIMABEAM algorithm con v erges after the third and

fourth iterations indicate that the third iteration already results in sligh tly higher

lik eliho o d v alues. This is p ossible b ecause eac h additional iteration starts from the

DSB con�guration ( i.e. eac h additional iteration starts with a log-lik eliho o d whic h

is lo w er than the v alue to whic h the previous iteration has con v erged.). This re-

sult sho ws that for this initialization metho d, a con v ergence criterion based on the
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Figure 6.34: ASR p erformance after the �rst iteration of the unsup ervised-

LIMABEAM with resp ect to rev erb eration time. F or simplicit y , w ord accuracy rates

with DSB w ere also sho wn as a part of the oracle-LIMABEAM curv es with x-axis

lab el 'DSB'.

log-lik eliho o d should stop the iterations not only when the log-lik eliho o d con v erges

but also when it falls b elo w the log-lik eliho o d v alue computed after the previous

iteration. Suc h a con v ergence criterion w ould stop the iterations after the fourth one

for this case, yielding the parameters after the third iteration as the optim um arra y

parameters.

The next exp erimen t is p erformed to in v estigate the p erformance using the algo-

rithm under di�eren t rev erb eration c haracteristics. F or this purp ose, the RIRs from

the ILMENA U en vironmen t w ere exp onen tially w eigh ted in order to c hange the re-

v erb eration time, whic h is originally ab out 700 milliseconds, similarly to the oracle

case. The unsup ervised-LIMABEAM w as tested with 200, 400 and 600 milliseconds

rev erb eration times. Figure 6.34 sho ws the w ord accuracy rates obtained after the

�rst iterations in these exp erimen ts. Recognition rates with the DSB con�guration

are also sho wn as part of the curv es with the x axis lab el 'DSB' for reference. The
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�gure indicates that the unsup ervised-LIMABEAM pro cessing impro v es the ASR

p erformance signi�can tly for all cases except 200 milliseconds, where the recognition

rates are already quite high. Similar to the oracle-LIMABEAM exp erimen ts, the ab-

solute impro v emen t in w ord accuracy decreases with decreasing rev erb eration time.

Ho w ev er, in terms of the relativ e reduction of the w ord error rates, the algorithm

results in signi�can t impro v emen ts in all cases.

W e observ e from Figure 6.34 that the algorithm generally leads to b etter results

with 5 taps when the rev erb eration time is long. Ho w ev er, for a shorter rev erb eration

time, 400 milliseconds, (There are no signi�can t impro v emen ts for 200 milliseconds

case.), the highest recognition rate can b e obtained with 50 taps and it is signi�-

can tly b etter than the recognition rate with 5 taps. W e think this is strongly related

to the rev erb eration c haracteristics, i.e. rev erb eration time, as there are no other

di�erences b et w een the setups. In the ligh t of this exp erimen t w e can claim that

it is hard to select the optim um n um b er of �lter taps regardless the rev erb eration

c haracteristics of the en vironmen t. These results are discouraging for the goal of

dev eloping an algorithm whic h do es not need an y a priori information ab out the

acoustic en vironmen t.

A dditional iterations of the unsup ervised-LIMABEAM algorithm w ere also p er-

formed for these rev erb eration times. Iterations w ere only p erformed for the �lter

taps where the algorithm already yields the b est p erformance after the �rst iteration.

The initial v alues of the arra y parameters for the additional iterations w ere set to

the DSB con�guration in the ligh t of the previous exp erimen ts. T able 6.6 giv es the

w ord accuracy rates and relativ e reductions in the w ord error rates obtained with

additional iterations. ASR rates with the DSB and oracle-LIMABEAM pro cessing

are also sho wn for reference. A dditional iterations impro v e the recognition rates, es-

p ecially when the previous iteration leads to a signi�can t impro v emen t. A signi�can t

impro v emen t with the previous iteration leads to signi�can tly b etter transcriptions

and state sequence optimization b efore the next iteration and hence b etter arra y

parameter optimization.
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Algorithm

No.

T aps

T60 No. Iter

W ord

A ccuracy

Rel. Reduction

in WER

unsup-LIM. 5 700 msec 4 69.05% 24.1%

oracle-LIM. 5 700 msec - 74.60% 36.6%

DSB - 700 msec - 59.21% -

unsup-LIM. 5 600 msec 3 75.24% 25.4%

oracle-LIM. 5 600 msec - 81.11% 43%

DSB - 600 msec - 66.83% -

unsup-LIM. 50 400 msec 2 86.67% 25.7%

oracle-LIM. 5 400 msec - 88.57% 36.3%

DSB - 400 msec - 82.06% -

unsup-LIM. 5 200 msec 1 92.38% 7.6%

oracle-LIM. 30 200 msec - 93.02% 15.4%

DSB - 200 msec - 91.75% -

T able 6.6: ASR p erformance using the unsup ervised-LIMABEAM with m ultiple it-

erations with resp ect to the rev erb eration time. F or eac h algorithm-T60 pair, the

n um b er of �lter taps whic h yields the highest ASR p erformance is considered. ASR

p erformances using the DSB and oracle-LIMABEAM are also giv en for reference.
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Figure 6.35: ASR p erformance using the unsup ervised-LIMABEAM vs. rev erb era-

tion time. ASR p erformances using the DSB, oracle-LIMABEAM and a single c han-

nel are also sho wn for reference. The �lters w ere initialized to the DSB con�guration

for additional iterations.

Figure 6.35 sho ws a summary of the results using the unsup ervised-LIMABEAM

algorithm with resp ect to di�eren t rev erb eration times. F or eac h case, the con�g-

uration ( i.e. n um b er of taps and iterations) whic h leads to the b est p erformance

is considered. The unsup ervised-LIMABEAM algorithm ob viously pro vides signi�-

can t impro v emen ts. W e observ e that the p erformance of the unsup ervised v ersion is

closer to the oracle-LIMABEAM for short rev erb eration times, ho w ev er for longer

rev erb eration times there is a signi�can t di�erence b et w een the p erformance of the

t w o algorithms. The reason is the n um b er of errors in the transcriptions. F or shorter

rev erb eration times, there are less errors in the initial transcriptions obtained b y

the DSB con�guration, hence optimization is more e�cien t and closer to the oracle

case. A ccordingly , when the n um b er of errors in the initial transcription increases
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Figure 6.36: ASR p erformance using the unsup ervised-LIMABEAM in the MMR

en vironmen t with additiv e noise

with increasing rev erb eration time, the di�erence b et w een the unsup ervised- and

oracle-LIMABEAM increases.

6.5.2 Exp erimen ts in the MMR En vironmen t with A dditiv e

Noise

The unsup ervised-LIMABEAM algorithm w as �nally tested in the MMR en viron-

men t with an additional noise source as in the exp erimen ts using the oracle- and

calibrated-LIMABEAM algorithms. The noise source, whose PSD is giv en in Fig-

ure 6.24, is placed at 30

�
from the arra y normal. The sp eak er is placed along the

direction of the arra y normal as b efore. The recognition rates obtained using the

unsup ervised-LIMABEAM algorithm in this en vironmen t are giv en in Figure 6.36.

W e observ e that recognition rates using the unsup ervised-LIMABEAM are b elo w

the DSB con�guration for this test setup. The ASR p erformance in the log mel sp ec-

tral domain using the unsup ervised-LIMABEAM algorithm is also b elo w the DSB,

hence the reason of the degradation is not the di�erence b et w een the optimization

and recognition domains. W e w ould not exp ect this result, as the recognition rates

using the DSB are not to o lo w. In the initial transcriptions obtained b y the DSB
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con�guration, three quarters of the utterances are lab eled correctly , hence the un-

sup ervised algorithm is exp ected to ha v e enough correctly lab eled data in order to

optimize the arra y parameters. W e think that the optimization of arra y parameters

is mostly led b y the wrongly lab eled frames of the sp eec h signal. As a result of

this, the partial lik eliho o ds of the erroneous parts are increased, and therefore the

recognition rates degrade.

6.5.3 Summary of Results Using the Unsup ervised-

LIMABEAM

In this section w e discussed the results of the exp erimen ts using the unsup ervised-

LIMABEAM algorithm. As no a priori oracle information is incorp orated in to this

algorithm, the ASR results are b elo w that of the oracle-LIMABEAM. Ho w ev er, this

v ersion of LIMABEAM algorithm still yields signi�can t impro v emen ts in rev erb eran t

en vironmen ts. Under a sev ere rev erb eration e�ect with 700 milliseconds rev erb era-

tion time, the algorithms yields a relativ e reduction of 24.12% in w ord error rates.

Nonetheless, w e observ ed that the unsup ervised optimization of arra y parameters

fails when an additiv e noise source is added to the test setup. Although the initial

transcriptions has enough correctly lab eled data, optimization of arra y parameters

is driv en b y the wrongly lab eled data. Ho w ev er, in this thesis our main concern is

ro om rev erb eration, hence no further exp erimen ts w ere p erformed in the additiv e

noise scenario.

The c hoice of the n um b er of �lter taps has an imp ortan t e�ect on the p erfor-

mance of the algorithm. W e surprisingly observ ed that in en vironmen ts with long

rev erb eration times, signi�can t impro v emen ts can b e obtained only with 5 taps p er

microphone. Ho w ev er, for a shorter rev erb eration time of 400 milliseconds, the al-

gorithm p erforms b etter with 50 taps p er �lter. This migh t b e a critical issue for

practical implemen tations of the algorithm, as incorp oration of a priori information

ab out the rev erb eration time of the en vironmen t is not desired.

The p erformance of the unsup ervised-LIMABEAM algorithm can b e impro v ed
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b y supplying b etter initial transcriptions. These can b e obtained, for example, using

calibrated arra y parameters [1]. After the calibration, the calibrated arra y parame-

ters are used to obtain b etter transcriptions of sp ok en utterances, and b etter state

sequences can b e obtained from these transcriptions. Under these conditions, the

unsup ervised arra y parameter optimization is exp ected to b e more e�cien t. Ho w-

ev er, our test data is syn thetically generated, ( i.e. distortion is pro vided b y measured

RIRs) and this metho d w ould pro vide unfairly go o d results with our static en viron-

men tal conditions. Hence, this suggestion is not applied in this w ork.

6.6 LIMABEAM in Literature

The LIMABEAM algorithm is a relativ ely recen t prop osal. Th us, there are a limited

n um b er of references whic h can b e found in the literature. These include the recogni-

tion results in di�eren t en vironmen ts, as w ell as mo di�ed v ersions of the algorithm.

Deriv ation of the algorithm and some exp erimen tal results b y Seltzer can b e found

in [1, 26, 27, 28 ].

As men tioned in Chapter 1, Mic hael Seltzer also suggests a frequency-domain

v ersion of the LIMABEAM algorithm (subband LIMABEAM, s-LIMABEAM). In

this v ersion the optimization of the arra y parameters is p erformed in the frequency-

domain. This allo ws optimization of the arra y parameters in individual frequency

bins and di�eren t n um b er of parameters can b e dev oted to individual frequency

bins regarding their imp ortance for recognition. It also supp orts join t optimization

of the arra y parameters for neigh b oring frequency bins. In [1 ], Seltzer states that

the frequency-domain LIMABEAM outp erforms the time-domain v ersion.

In [29 ], McDonough deriv es an algorithm based on the ML criterion in order to re-

estimate the w eigh ts of a subband domain generalized sidelob e cancellor (GSC). T w o

re-estimation algorithms, one based on a gradien t-descen t pro cedure and another

based on a Kalmann �lter are in tro duced. Ho w ev er, the recognition results sho w

that these approac hes are not able to obtain an y signi�can t impro v emen ts in terms
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of ASR p erformance.

A cepstral domain v ersion of the s-LIMABEAM algorithm is discussed in [30 ].

This cepstral domain algorithm is used for estimating the arra y parameters of an un-

constrained DSB and a GSC. The exp erimen tal results obtained with a calibration

sc hema sho w that the cepstral domain v ersion of the algorithm leads to sligh t im-

pro v emen ts of the recognition rates. The s-LIMABEAM sc hema based on optimiza-

tion in the log mel sp ectrum domain is rep orted to fail to impro v e the recognition

rates in these tests.

In [31], Luca Bra yda suggests a mo di�cation of the unsup ervised-LIMABEAM

algorithm in order to w ork on an N-b est h yp otheses basis (N-b est unsup ervised-

LIMABEAM). Instead of optimizing the arra y parameters only for one transcrip-

tion, the N b est transcriptions are obtained with an initial recognition. Individual

sets of arra y parameters are optimized in parallel for eac h of these transcriptions.

Finally , the lik eliho o ds are re-scored to obtain one new maxim um lik ely transcrip-

tion. The idea b ehind this mo di�cation is simple. The N-b est h yp otheses are listed

with decreasing lik eliho o d v alues. Ho w ev er, it is most lik ely that some of them ha v e

lo w er n um b er of w ord errors than the single b est h yp othesis obtained with an ini-

tial recognition. It is also highly probable that these N-b est h yp otheses include the

correct transcription [31]. Hence, after unsup ervised-LIMABEAM pro cessing, some

of these N h yp otheses can lead to b etter transcriptions with higher lik eliho o d v alues

and the ASR p erformance migh t b e increased. Indeed, in [31 ], the ASR p erformance

using the N-b est unsup ervised-LIMABEAM algorithm is rep orted to b e v ery close

to that using the oracle-LIMABEAM if N is su�cien tly high.
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Chapter 7

Conclusions

In this thesis, the ASR p erformance w as in v estigated using the LIMABEAM algo-

rithm in distan t-talking en vironmen ts. The LIMABEAM algorithm [1 ], prop osed b y

Seltzer, suggests optimization of the microphone arra y parameters in order to max-

imize the lik eliho o d of the correct transcription of the sp ok en utterance. In con trast

to the con v en tional arra y pro cessing metho ds, this approac h com bines the sp eec h

recognition and arra y pro cessing blo c ks b y de�ning the goal of arra y optimization

as increasing the lik eliho o d.

In Chapters 2 and 3 an o v erview of automatic sp eec h recognition and its problems

in rev erb eran t en vironmen ts w as giv en. Chapter 4 w as dev oted to microphone arra y

pro cessing and b eamforming issues. After �nishing the theoretical discussion whic h is

necessary to understand the algorithm, the LIMABEAM approac h w as in tro duced

in Chapter 5. Finally , w e discussed the exp erimen tal results whic h w ere obtained

using the LIMABEAM algorithm in di�eren t en vironmen ts in Chapter 6.

In order to in v estigate the ASR p erformance, the LIMABEAM algorithm w as

implemen ted in MA TLAB en vironmen t, while sp eec h recognition w as p erformed b y

a connected digit recognizer based on the HTK soft w are. The p erformance of the

algorithm w as tested under di�eren t conditions. Moreo v er, the algorithm w as tested

in some setups, whic h w ere esp ecially designed to in v estigate the con v ergence issues.

In most of the exp erimen ts, the LIMABEAM algorithm is able to impro v e the ASR
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p erformance signi�can tly . W e sa w that this approac h is able to comp ensate some

adv erse e�ects of ro om rev erb eration, although not en tirely . The LIMABEAM pro-

cessing is also able to atten uate the incoming comp onen ts from an additiv e noise

source in the MMR en vironmen t when the correct transcription of the sp ok en ut-

terance is pro vided in b oth oracle and calibrated LIMABEAM cases, ho w ev er the

arra y parameter optimization using the unsup ervised v ersion fails in this scenario.

Con v ergence rate of the conjugate-gradien t optimization to the global maxim um

of the lik eliho o d function is an imp ortan t criterion to ev aluate the p erformance of

the algorithm. Conjugate-gradien t based maximization is assured to con v erge to a

maxim um, but not necessarily the global one. Hence, it is imp ortan t to understand

ho w often the algorithm con v erges to lo cal maxima. In Chapter 6 w e sho w ed that the

algorithm can con v erge to reasonable �lters, whic h are close to the global solution,

when a single c hannel with a designed con v olutional distortion is used. Ho w ev er, in

case of real en vironmen ts, the p erformance of the algorithm is degraded b ecause of

con v ergence to lo cal maxima. In most of our exp erimen ts, increasing the n um b er

of �lter taps resulted in a degradation of the ASR p erformance. This phenomenon

sho ws that as the n um b er of �lter taps increases, the algorithm con v erges to lo cal

maxima with higher probabilit y . W e b eliev e that the reason is the increasing n um b er

of lo cal maxima with increasing n um b er of �lter taps. Moreo v er, w e also b eliev e that

this con v ergence phenomenon dep ends on the test conditions, including the acoustic

en vironmen t, as w ell as the ASR system, recognition task and training and test data

and is sub ject to c hange in di�eren t en vironmen ts.

The e�ect of the n um b er of arra y parameters on the ASR p erformance is not

v ery clear. In addition to the ab o v e discussion, w e also observ ed that increasing the

n um b er of �lter taps can impro v e the recognition rates in case of shorter rev erb er-

ation times. This fact also con�rms our b elief ab out the critical dep endence of the

con v ergence issue on the en vironmen tal conditions and the n um b er of �lter taps.

The frequency-domain v ersion of the LIMABEAM (s-LIMABEAM) algorithm is

also prop osed b y Seltzer [1 ]. This v ersion allo ws optimization of arra y parameters in
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individual subbands, hence optimization in subbands can b e p erformed in parallel

with less data and �lter taps. This approac h is exp ected to increase the con v ergence

rates, as w ell as pro viding the abilit y to dev ote di�eren t n um b er of arra y parameters

to di�eren t subbands. In the ligh t of Seltzer's results, s-LIMABEAM can b e exp ected

to comp ensate the in terfering e�ects of rev erb eran t en vironmen ts more e�cien tly

than the time-domain LIMABEAM.

In tegration of an e�cien t cepstral domain based optimization in to the sc hema

can also increase the recognition rates. In some of the exp erimen ts, w e observ ed

that the log lik eliho o d in the log mel sp ectral domain is increased b y the algorithm

together with the recognition rates in the log mel sp ectral domain. Ho w ev er, in

con trast, the recognition rates in the MF CC domain are not impro v ed. This ob-

serv ation indicates that although parallel HMMs are obtained using the single-pass

retraining, there migh t still b e some v ariations b et w een these t w o domains. Hence,

an e�cien t optimization sc hema in the MF CC domain can increase the p erformance

of the algorithm. [30] rep orts sligh tly impro v ed recognition rates with a cepstral

domain s-LIMABEAM sc hema.

T o conclude, it is stated that the LIMABEAM approac h is able to increase the

recognition rates signi�can tly in rev erb eran t en vironmen ts. Nonetheless, the algo-

rithm su�ers from the con v ergence of the non-linear optimization to lo cal maxima.

A solution to this phenomenon w ould ensure that the full p oten tial of the algorithm

could b e exploited.
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Notation

Abbreviations

ASR automatic sp eec h recognition

DCT discrete cosine transform

DFT discrete F ourier transform

DSB dela y-and sum-b eamformer

FFT fast F ourier transform

FIR �nite-impulse-resp onse

FSB �lter-and-sum b eamformer

GSC generalized sidelob e canceller

HMM hidden Mark o v mo del

HTK Hidden Mark o v Mo del T o olkit

I IR in�nite-impulse-resp onse

LIMABEAM lik eliho o d maximizing b eamforming

MF CC mel frequency cepstral co e�cien ts

PSD p o w er sp ectral densit y

RIR ro om impulse resp onse

SNR signal-to-noise ratio

SRR signal-to-rev erb eration ratio

s-LIMABEAM subband lik eliho o d maximizing b eamforming

TDC time-dela y comp ensation

TDE time-dela y estimation

WER w ord error rate

125



NOT A TION

Mathematical op erators

P(:::) probabilit y measure

exp(:::) exp onen tial function (i.e. e(:::)
)

log10(:::) decade logarithm (base 10)

log(:::) natural logarithm (base e)

maxf :::g maxim um op erator

argmaxf :::g argumen t of the maxim um op erator

@
@ x partial di�eren tiation with resp ect to x

xT
transp ose of v ector x

detX determinan t of matrix X

X � 1
in v erse of matrix X

y[k] � x[k] discrete-time con v olution of y[k] and x[k]

Chapter 2 - Automatic Sp eec h Recognition

w an y p ossible w ord sequence

ŵ output transcription of the recognizer

W set of all p ossible w ord sequences

X sequence of observ ed sp eec h feature v ectors

w[k] Hamming windo w

k discrete-time index k

K windo w length

f frequency [Hz]

N n um b er of HMM states

sj j th state of a HMM

qt HMM state o ccupied at time t

x observ ed sp eec h feature v ector

bsi (x) output probabilit y densit y of state i

n length of the feature v ector

� v ector of mean v alues of a Gaussian densit y
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Chapter 2 - Automatic Sp eec h Recognition (con tin ued)

� co v ariance matrix of a Gaussian densit y

N (x; � ; � ) probabilit y densit y of an n -dimensional Gaussian

M n um b er of Gaussian densities in a mixture

csi m w eigh t of the m th mixture and i th state

� si m mean v alue v ector of the m th mixture and i th state

� si m co v ariance matrix of the m th mixture and i th state

B parameter set of a mixture of Gaussian densities

A state transition probabilit y matrix

� si sj transition probabilit y from state i to state j

� parameter set of an HMM

x t observ ed feature v ector at time t

q state sequence

Q set of all p ossible state sequences

bqt (x t ) output probabilit y densit y of the state o ccupied at time t

� qt qt +1 transition probabilit y from the state o ccupied at time t to the state

o ccupied at time t + 1

q̂ optim um state sequence

Chapter 3 - ASR in Rev erb eran t En vironmen ts

x[k] digital microphone signal

s[k] digital close-talk microphone signal

� ds propagation deca y of direct sound

� i propagation deca y of the i th ec ho

� ds propagation dela y of direct sound

� i propagation dela y of the i th ec ho

hRIR [k] discrete-time ro om impulse resp onse

LRIR length of the ro om impulse resp onse in samples
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Chapter 4 - Microphone Arra y Pro cessing

� angle of a sound source to the arra y normal

� prop propagation dela y of a plane w a v e b et w een t w o microphones

d distance b et w een t w o microphones

c sp eed of sound

M n um b er of microphones in an arra y

� m w eigh t of c hannel m

� m time-dela y estimate of c hannel m

xm [n; � ] signal arriving at the microphone m from the angle � to the arra y

normal

H (!; � ) b eamformer resp onse

hm [p] pth tap of the �lter asso ciated with the m th c hannel of a microphone

arra y

P n um b er of taps p er �lter

Chapter 5 - Lik eliho o d Maximizing Beamforming

w an y p ossible w ord sequence

ŵ output transcription of the recognizer

W set of all p ossible w ord sequences

X sequence of observ ed sp eec h feature v ectors

h v ector of arra y parameters of all microphone c hannels

X (h) sequence of observ ed sp eec h feature v ectors as a function of h

wc correct transcription of a w ord sequence

ĥ v ector of optim um arra y parameters of all c hannels

q state sequence

i frame index

x i (h) feature v ector observ ed at frame i as a function of h

Qc set of all p ossible state sequences for the correct transcription wc
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Chapter 5 - Lik eliho o d Maximizing Beamforming (con tin ued)

q̂i HMM state at frame i wrt. the optim um state sequence

L(h) total log lik eliho o d of an utterance as a function of h

r h L(h) gradien t v ector of the total log lik eliho o d wrt. h

� i mean v alue v ector of the HMM state at frame i

� i co v ariance matrix of the HMM state at frame i
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