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KURZFASSUNG \%

Kurzfassung

In dieser Arbeit werden Feature Deskriptoren far die Verwendog in der Objektdetek-
tion und Erkennung studiert und evaluiert. Hierzu werden sie inia bestehendes Ob-
jektdetektionsframework, das auf dem Implicit Shape Modeldyuht, mit eingebunden.
Dazu werden verschiedene State of the Art Deskriptoren naherelrachtet. Dansber
hinaus wurde das Standardisierungsprojekt von ISO MPEG name@ompact Descrip-
tors for Visual Search verfolgt und zwei vielversprechende Raege Detektoren werden
daraus vorgestellt. Ein zusatzlicher Objekttrainingalgorihmus der binare Deskrip-
toren verwendet wurde implementiert. Diese Implementierunbasiert auf Matlab und
mexopencv. Dazu wurde ein neuer binarer Deskriptor entwiek, TADIP genannt,
mit dem Ziel einer besseren Eignung fur Objektklassen wie z.B. Fganger im Vergle-
ich zu aktuellen binaren Deskriptoren. Bezsglich der Arbdian binaren Deskriptoren
wird ein Algorithmus prasentiert der die Zahl der Deskriptora aus der Trainingsphase
beschrankt auf die am meist wiederholbaren und auch weitereexbesserungen wer-
den gezeigt. Zusatzlich wird ein Dense Sampling Verfahremirfbinare Deskriptoren
implementiert und evaluiert und die Verwendung von Vorwissember Skalierungen
eingefahrt um die Unsicherheit bezsglich Objektgm en zuverringern. Die Verfahren
werden an einem Datensatz getestet der aus einer Sequenz volddsn besteht, die
von einer Uberwachungskamera vor einem Autobahntunnel aufgenommen rde und

an einem Benchmarkdatensatz zur Detektion von Fu gangernTUD-Pedestrians.



Vi ABSTRACT

Abstract

Feature descriptors for object detection and recognition arstudied and evaluated
within this work. They are integrated in an existing object déection framework which
is based on the Implicit Shape Model. Therefore, current statef the art descrip-
tors are examined. The ISO MPEG standardization project Compa Descriptors for
Visual Search was observed and two promising feature detecton® gresented from
this project. An additional object training algorithm is implemented which can handle
binary descriptors. The implementation is based on Matlab and exopencv. A new
binary descriptor named TADIP is developed with the aim to havean descriptor which
is better suited for object classes like pedestrians as state oéthrt binary descriptors.
Regarding the work on binary descriptors, an algorithm is presged to constrain the
descriptors computed in the training phase to the most repeatéb ones and further
improvements are shown. Additionally, a dense sampling apprdafor binary descrip-
tors is implemented and evaluated and the use of scale priorsimroduced to reduce
the uncertainty of object scales. The approaches are tested ordataset consisting of
an image sequence captured from a surveillance camera in frofta motorway tunnel

and on a benchmark dataset for pedestrian detection, TUD-Pedesins.
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Chapter 1

Introduction

1.1 Problem Statement

Object detection and object recognition is omnipresent in aweveryday life. Recogniz-
ing persons entering the room or crossing our way, a co ee cup oaralesk, or even
reading this text, almost all of our acting is associated with decting and recognizing
objects. The human visual system is able to classify tens of thousandbjects even if
these appear in di erent sizes, distances and viewpoints, undeanous lightning con-
ditions, partially occluded or a ected by deformations to nane only a few variations
in appearance. ldentifying objects from the distribution ofphotons striking the retina
has to be and is done in fractions of seconds [1]. Nowadays, we éh&mave sensors
with similar abilities like the human eye and we have processowghich are able to
perform hundreds of billion arithmetic operations per secah[Z]. It is an active area
in research to solve such recognition task with today's computnhardware but it is
still a very challenging one. One objective therefore is to kable to carry out work to
machines which only humans were able to do in the past. This woaddresses outdoor
surveillance applications like detecting cars in front of a otorway tunnel. It will be
used in the SINGA video analytics platform of the Siemens AG. Tén platform is for

the SKRIBTP'YS [3] project of the GermanBundesamt far Bewlkerungsschutz und



Train Feature | Features | Object
images | detector modeller Object
models
Test Feature | Features | Hypothesis| Object
image Detector formation | hypothesis

Figure 1.1: Block diagram of an object detection system

Katastrophenhilfe Within this project, events like stopped vehicle, trac jam, slow

tra c, wrong way driver, lost cargo and so on should be detected.

We build on an existing object detection framework, the Imptit Shape Model (ISM)
[4], which was implemented during a master thesis projectl [Skigure [I.1 describes a
general approach for an object detection system. At rst, modslof object classes have
to be learned. Therefore, features are extracted from knowsbjects within training
images and model or multiple models are learned for each atijelass which should be
recognized. This modelbase is used for detecting and recogmgzobjects in test images.
Detected features in a test image are matched with object modeand likelihoods are
assigned if and where objects are present in the scené [6]. Objbgpothesis are
designated if the estimated likelihood is above a threshold. Wiin this thesis, we
concentrate on the feature detection part. More speci callywe are using feature

descriptors around keypoints or around densely sampled points.

Currently, the ISM implementation uses SIFT features whichdad in general to good
detection performances but which have a high computationadomplexity. Addition-

ally, patent and licensing restrictions limit their use in comnercial applications. Thus,
we aim to develop fast and license free feature descriptors wiimilar detection per-
formance. These descriptors must handle challenging illumitian conditions given
in outdoor surveillance applications and many other challeges accompanied with the

detection of object classes like cars or pedestrians. For examphe di erent clothes
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persons can wear or varying forms and colors of cars. Furthermepthe selected feature

descriptor must t with the high level detection model.

1.2 Structure of Thesis

In chapter [2 we introduce di erent interset point detectors ad in chapter[3 feature
descriptors. We are describing the Implicit Shape Model in chégr 4 and the Compact
Descriptors for Visual Search standardization project in chapt[5. Details about all
algorithms implemented for the use of feature descriptors irhé Implicit Shape Model
are given in chapter 6. The dierent approaches are evaluatién chapter [4 and we

conclude with chapter8 in which a short summary and outlook isiggn.
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Chapter 2

Interest Point Detection

2.1 Introduction

Interest points, or sometimes called keypoints, are the centef ioformation-rich image
patches. The region around the keypoint can be described by aafere descriptor.
The information of multiple descriptors is used for representg an image or parts or
objects within an image. The interest points are located wherchanges of properties
like intensity, color or texture in an image occur([7]. The proess of detecting interest
points have a clear mathematical de nition resulting in a coarete position in the image
space. One important aspect is the repeatability of keypointsThey have to be stable
under local and global perturbations in the image domain asiumination/brightness
variations occur in di erent images showing the same scene orjebt. If variations in

object sizes occur, the notion of interest point should includen attribute of scale [8].

In the subsequent sections, several interest point detection atgbms are presented.
First, the still widely used Harris corner detector and afterwais the very e cient
state of the art corner detectors FAST and AGAST. Lastly the di erence-of-Gaussians

keypoint detector from the well-known scale-invariant featre transform is introduced.
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2.2 Harris Corner Detector

The Harris Corner Detector was developed by Chris Harris and ke Stephens in 1988
[9]. Here, corners do not necessarily imply 2D projections of 3fdrners. They can be
characterized more general by points in the image with highucvature [7]. To detect
these points, an image patch over an areaiv) is shifted by various o sets ;y).
Then, the so-called corner scor8(x;y) is computed for each o set which is indicated
by the weighted sum of squared di erences (SSD) of the image phtand the shifted
image patch. This can be denoted by

X X
S(x;y) = w(u V(I (u+ x;v+y)  T(u )5

u Vv

wherel is the two-dimensional intensity image and the weightingv(u; v) represents a
circular Gaussian-smoothing. For further simpli cation,| (u+ x; v+ y) is approximated

by a Taylor Expansion. Letl, and |, be the partial derivatives ofl , such that

[(u+ x;v+y) (U v)+ Ik(uv) x+ 1y(u;v) y:
So the following approximation can be used

X X
S(x;y) w(u; V)(e(u;v) X Ty(u;v) )=

u Vv

In matrix form, this leads to
0 1

sxy) xy ABK
y

whereA is the Harris matrix,
0

1
X X 12 1,1
A = wuvd Yk
u v Iy 15
A large variation of the corner scores(x;y), with respect to x and y, denotes a corner.
This can be checked by the size of the eigenvalues of the Harrigtnx A. If both

eigenvalues have large positive values, a corner is detectéidone eigenvalue is small



and the other large, an edge is found and no interesting poirgt found if both eigenvalues
are small. To avoid the demanding eigenvalue decomposition thfe matrix A, the
following function M. is computed, where is a tunable sensitivity parameter and ;

are the eigenvalues:

Mc= 1 2 ( 1+ 2)°= Det(A) Tr(A)?

whereDet(A) is the determinant of A and Tr(A) represents the trace of A.

2.3 Features from Accelerated Segment Test (FAST)

The FAST corner detector is based on the SUSAN corner detectdr J10The idea in

both detectors is to examine a circle and compare it to the cer point called the

nucleus. If the pixels are very di erent to the center point, acorner is detected at the
nucleus. FAST is an abbreviation for Features from AccelerateSegment Test. The
segment test criterion considers a circle of e.g. sixteen pixe@sound the nucleus as
shown in Figure[2.1. Here, the corner candidate is the nucleus. carner is detected if
n pixels consecutive along the circle are all brighter than thatensity of the nucleus

plus a thresholdt or if they are all darker than the intensity of the nucleus minst.

The FAST approach aims to nd a way in which order the circle piels x have to be
compared with the nucleusp to be able to decide as early as possible if the candidate
pixel is a corner or not [I1]. For this task, a machine learninglgorithm is used
where corners are detected from a set of test images using the seghiest criterion.
Thus, all 16 circle pixels are compared in o ine training and he average number of
pixels to compare should be reduced for the online detectiomgse. To achieve such a
fast decision, it is examined how much information about the aksi cation, candidate
pixel p is a corner or not, is given by a certain circle pixek 2 f 1;:::;169. The pixel

intensity at the relative position x, |, x, compared to the intensity ofp, I, can have
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the following three states:

8

% d; 1o x Ip t (darker)
Sp!x=§s; lp t<lp x<lp+t (similar)

S N P A YR (brighter)

P is the set of all pixelsp in all training images and can be partitioned into the three
subsetsPyx, Psjx, and Pyy for a certain x.

In the second stage, the decision tree learning algorithm ID3 issed to select thex

which yields the most information whether the candidate piXeis a corner. This is
measured by the entropy oK, and K, is a Boolean variable which is only true ip is

a corner. The entropy ofK for the setP is
H(P)=(c+ c)log,(c+ c) clog,(c) clog,(c)

where c= jf pjK, is truegj (number of corners)

and c= jfpK, is falsgj (number of non corners).

This leads to the information gain

IG«(P)= H(P) Hy (Pgix) + Hx(Psjx) + Hx(Pyix)

The creation of the decision tree is described by the procedBeildFASTDecisionTree.
To discard corner responses which are adjacent to more promiherners, a non-
maximum suppression is performed. A score functiovi is used to rate the responses

which is based on the sum of the absolute di erences:

0 1
X : X . :

X2 Spright X2 Sark
with

Soright = fXjlpr x 1o+ tg

Sdark = 1:lep! x lp 19



Procedure BuildFASTDecisionTree(P, r)
Data : initially: set of all pixels P; recursive steps: subsetByjz, Psjx, and Pyz of X

with highest IG4(P); root noder.
Result : Decision tree that tells whichx has to be compared next until a decision can
be made whether a point is considered as a corner or not.
compute |G (P) 8x;
R = argrxnaxf IG«(P)g;
create subsetyz, Psjz, and Pyg;
for j 2fd;s;lpdo
if Ky is true 8p 2 Pjj; then
/I in this subset all test pixel are classi ed as corners;
create a leaf nodec underr;
else
if Ky is false8p 2 Pjj; then
/l'in this subset all test pixel are classi ed as non corners;
create a leaf noden underr;
else
// no decision can be made, further distribution needed;
create a nodetj underr;
BuildFASTDecisionTree(P;z, t;);

end

end

end
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Figure 2.1: 16 circle pixels marked in blue and nucleus p mautk in red used in seg-
ment test.

2.4 Adaptive and Generic accelerated Segment Test

(AGAST)

Adaptive and Generic accelerated Segment Test (AGAST)) [12] sased on the same
corner criterion as FAST but no training is needed. Instead, th AGAST corner detec-
tor dynamically adapts to the image environment. One pixeltathe circle is evaluated
per time and the selection of the next pixel depends on the respse of the current
pixel evaluation. In contrast to FAST, it is not asked if the cirde pixel x is brighter,

similar or darker than the nucleusp. Only a binary question is evaluated like brighter

or not, darker or not or similar or not. The resulting states are igen as follows:

: d; lp x<lp 't (darker)
§ d; lpx Ip t"AS) ,=u (notdarker)
Sy = S; lpx lp thS) ,=b (similar)
S; lpx lp+t"hS5 ,=d (similar)
% b; Ipx lp+t~Sy ,=u (notbrighter)
b g x>ttt (brighter)

where S, , is the preceding state andi means that the state is still unknown. Thus,

the corner classi cation tree is binary. The tree is build by aralgorithm similar to the
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Pixel Neighborhood:

Homogeneous

Heterogeneous : ™

Figure 2.2: AGAST switch between homogenous (left) and hetegeneous decision
tree (right). The darker the gray of a leaf the fewer similar piels are in the evalu-
ated con guration [12].

backward induction method [13]. The building also incorpotas computational costs
for register, cache and memory access.

The optimal decision tree di ers depending on the homogengibf the evaluated image
region. To address this circumstance, multiple decision treese taken into account.

In the simplest case, there is one decision tree for homogenousl ame for cluttered

regions. The probability of similar pixels compared to all evaated pixels gives some
information about the adequate decision tree. Being in the mogeneous tree, a short
decision path indicates an uniform image patch. In contrast, &éarge path indicates

a structured region and therefore a jump to the cluttered desion tree is performed.
Figure[Z2 shows this switch graphically.

Neighboring corners are discarded in the same way with non-maxim suppression
like in FAST.

2.5 Dierence-of-Gaussians (DoG)

Di erence-of-Gaussians is used to detect keypoints in the scatevariant feature trans-
form (SIFT) [L4]. Candidates for keypoints are extrema of th spatial output of the
di erence of Gaussian functionD (x;y; ) in di erent scales. Therefore, the input im-

agel (x;y) is convolved with a kernel consisting of the di erence of two &ussians with
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the standard deviations and k
D(xy; )=(Gxy;k ) Gy; ) 1(xy);

where is the convolution operation and

G(xy; )= 2129 (e D

The search for extrema is done in di erent resolutions in the socalled scale-space to be
invariant to scale. Smaller scales are represented by smoothilfg,y) with a Gaussian
kernel. The larger the , the smaller the scale. The di erence of Gaussians images with
varying Yyield to one octave in scale-space. Additionally, if is twice the initial value,
the image is down-scaled by a factor of two and the search for keynts is recapped at
this scale. This process is repeated and the resulting octavead to an image pyramid.
Nevertheless, the Gaussian smoothing has to be done in any case Bx{d;y; ) can

be rewritten as

D(x;y; )= L(xy;k ) L&y, )

where

L(xiy; )= G(xy; ) 1(xy)

The local minima and maxima are now detected by comparing dasample point to its
eight neighbors in the current image and nine neighbors in ¢hscale above and below
as it can be seen in Figuré2.3.

The di erence-of-Gaussian function represents a good approxation of the scale-
normalized Laplacian of Gaussian ?r G which is required for true scale invariance

[14].
_ @G G(xy:k ) G(xy; )

2
r -G @ K

Gxy;k ) Gy ) (k1) %G

More details about the localization and ltering of the keymint candidates is given in
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Scale =

=

pd P )
= e S

yd

Figure 2.3: Extrema detection in scale-space of di erence-Gfaussians images by
comparing a pixel (marked with X) to its neighbors (marked wih green circles)[14].

B.2.
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Chapter 3

Feature Descriptors

3.1 Introduction

In this chapter, feature descriptors for local features arexamined. The descriptors are
computed from patches around interest points which are deslbéad in section”Z1l. The
descriptor for the local feature is typically obtained from reasurements covering the
center and the neighborhood of the interest point. These measments are stored in
a feature vector or a binary string([7]. The following propeiés are important for local

features (depends on the application) [15]:

Invariance: Features should be as invariant as possible to illumination vamces,

di erent scales and orientations of objects.

Locality: For robustness against occlusions and deformations, they should b

based on local information.

Repeatability: A high percentage of the extracted features / keypoints shadl

be also evident in identical objects or scenes in di erent imag.

Distinctiveness: The description should be distinguishable from other, unequal

features.
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Quantity: A reasonable number of features should be detected even on small

objects.
E ciency: Low computation time is required to allow real-time performance.

Extensibility:  Some applications need to incorporate additional informain or

combinations of features.

The resulting feature descriptors could be used in a broad rangéapplications like ob-
ject detection and recognition, stereo correspondence, naoiitracking, image retrieval

or image stitching.

3.2 Scale Invariant Feature Transform (SIFT)

SIFT features are invariant to image scaling and rotation angartially invariant to
changes in illumination and 3D camera viewpoint. The compation of the features in
the scale invariant feature transform includes four stages, naaty scale-space extrema
detection, keypoint localization and Itering, orientation assignment and the feature

descriptor computation [14].

Scale-space extrema detection Scale-space extrema detection is done by the di erence-
of-Gaussians detector as described in sectibnl2.5. The resultexgrema are keypoint

candidates.

Keypoint localization and ltering Keypoint candidates with low contrast are
rejected because these are very sensitive to noise and therefoageha very poor re-
peatability. Additionally, the keypoints are restricted to points with high curvature. To
localize keypoints in an accurate way, an interpolation badeon the quadratic Taylor

expansion of the Di erence-of-Gaussian scale-space functibr{x;y; ) is performed.

D(%) = D + @—Ijx+ }‘XT@‘X

@ % 2 @%
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where D and its derivatives are evaluated at the location of the keygnt candidate
and x = (x;y; ) is the o set from this point. The derivative of this function with
respect tox is set to zero and the location of the extremunx is determined. Then the
o set % is added to the original keypoint candidate location. Aftenards, X is inserted
in the Taylor expansion functionD (). If jD(?()j < 0:03, the contrast is too low and
the keypoint candidate is rejected.

The di erence-of-Gaussians function has also a strong responsera) edges and not
only at corners. These keypoint candidates have to be discardbdcause the location
along an edge is very uncertain even if only small amounts of ise are evident. To
detect these points, the principal curvature at the keypoint andidate location is eval-
uated. In contrast to a corner which has a large principal cuature in all directions,
a point along the edge has only a large principal curvature ione direction and a very
small one in the perpendicular direction. The eigenvalues and , of the 2x2 Hessian

matrix

2 3
=g D0
DXy Dyy
are proportional to the principal curvatures ofD. Thus, the ratio r = - of these

eigenvalues, where ; has the larger magnitude, is a good indicator for the curvate of
the keypoint candidate. To avoid the computation of the eigevalues, the sum of the

eigenvalues is computed from the trace ¢ and their product from the determinant:
Tr(H)= D+ Dyy= 1+
Det(H) = Dxx Dyy (ny)2 = 12

This leads to the following ratio:

Tr(H)? _ (1+ 22 _ (r 2+ ) _ (r+1)2
Det(H) 12 r3

Thus, r increases with increasing ratiogeﬁ%)j. Due to this, keypoints with larger can

be discarded. According to the original papei[14], points i r > 10 will be sorted
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out.

Orientation assignment To achieve invariance to image rotations, an orientation
is assigned to the keypoint. Therefore, an orientation histogm is calculated consid-
ering all pixels within a certain area around the keypoint. Eeh sample is weighted by
its gradient magnitude and by a Gaussian-weighted circular wilow around the key-
point. The gradient magnitude m(x;y) and orientation (X;y) is precomputed from

the Gaussian smoothed imagk(x;y) at the appropriate scale:

q
m(x;y) =  Lx(x;y)2+ Ly(x;y)?

L Ly(xy)
Lx(X;y)

(X;y) = tan

where the gradients are approximated by pixel di erences:
Le(y) = L(x+1;y) L(x Ly)

Ly(xy)= L(x;y+1) L(xy 1)

The assigned orientation of the keypoint is the maximum of the istogram, which
indicates the dominant orientation. To be more accurate, # nal peak position is cal-
culated from an interpolation of the maximum value and its tw histogram neighbors.
Furthermore, any peak within 80% of the highest peak is used taeate a keypoint

with its orientation.

Feature descriptor Feature descriptors are a representation of the image patch
around interest points, which gives the ability to easily matctihem with other interest
points. The gradient orientations are rotated about the samemount and direction
as the assigned orientation of the keypoint has to be rotated tpoint upwards. This

is done to achieve invariance to rotations. As shown in FiguieI.the sample points
around the keypoint are grouped into subregions and for evesybregion, a histogram of

gradient orientations is computed. As in the orientation assignent stage, each sample
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Figure 3.1: SIFT feature descriptor using 2x2 subregions eaclithv4x4 gradient
samples. Gradient orientations are weighted by gradient magade and by a Gaus-
sian weighting function illustrated with a blue circle on the &ft side. The resulting
descriptor is placed on the right side. For every subregion a higgram with 8 dis-
tinct orientations is computed [14].

is weighted by its gradient magnitude and by a Gaussian-weigdd circular window.
The gradient orientations are assigned to 8 orientation binsnal a trilinear interpolation

is used to distribute each sample into adjacent bins. This approh provides a smooth
assignment of the orientations to the histogram and avoids bodary e ects. In the
original paper [14], 4 4 subregions and 8 orientation bins are taken into account,
which leads to an 4 4 8 = 128 element feature vector for each keypoint. This
feature vector is normalized to unit length to cancel out the ects of linear illumination
changes between image. However, non-linear illuminationamges can not be erased
by normalization. These e ects can cause large gradient maguies and therefore a
threshold of 0.2 is applied to each value of the unit vector and renormalization is

performed.

3.3 Speeded-Up Robust Features (SURF)

The interest point detection in SURF is also included in this seain. It is based on
searching for maxima of the determinant of the Hessian matrix. Wdreby the elements

of the matrix are computed by a low complex approximatiori [JJ6 The Hessian matrix
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at an image pointl (x;y) at scale is de ned as follows (see also sectién_8.2)
2 3

Lux (X Y; Ly (X Y;
8 (xy: ) Ly(Xy: ) z

Hixy; )=
Ly (Xiys ) Ly(Xy; )

where

L (X y; )= Co%ii((G(x;y; ) l(x;y))=(gf(G(x;y; ) 1(Xy)

vy @ o @ ey _

Ly(Xy; )= @9(G(X,y, ) I(X,y))—(@g,G(X,y, ) 1(xy)

Ly (X y; )= @@;@()C/S(x;y; ) I(x;y))=(@g@c§l(x;y; ) 1(xy)
and

1

Gxy; )= 5 e XD

The convolutions of Gaussian second order derivatives with thaput image | (x;y)
are approximated by box lters [17]. The two lters at the right of Figure 3.2 have
constant values at rectangular sections. These are called bdsgle These lters are
a simpli cation of the two left Iters which are cropped and discretized versions of
the second order partial derivative of the Gaussian function. fie response of the box
Iters can be computed with very low e ort. The constant value of every boxlet is
multiplied by the sum of all pixels in the corresponding subregn in the image and
the resulting weighted sums of all subregions are summed up. Tharswf the pixels
within a subregion is computed with integral images. The valuef an integral image
I (x;y) is equal to the sum of all pixels of the input imagé (i;j ) which are in the rst

to the i-th column and in the rst to the j-th row:

X ¥
I (xy) = 1(i5j)

i=0 j =0

Given a rectangular area in the imagé which is represented by the four point$ (x1; y1),

I (X2;¥1), | (X1;Y2) and | (X2;Y2), wherex, > x 1 andy, >y;. The sum of all pixels in
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the rectangular area is simply

ixx2ixy2
L) =1 (X2iy2) 1 (X5y2) 1 (Xzsya) + 1 (Xq;y1):
i=X1j=y1
The box lIter responses are denoted byD, (X;y; ), Dy(X;y; ) and Dy (X;y; ),
similar to the notations Ly (X;y; ), Lyy(X;y; ) and Ly (X;y; ). These leads to the

approximation of the determinant of the Hessian matrix

Det (Happrox (G Y; ) = Dix (X Y; )Dyy(X;y; ) (WDy (Xy; )%

The weighting factorw is needed for this kind of approximation and is scale dependen
but is set to the constant value of @ in practice.

Similar to SIFT, the feature detection procedure is appliect di erent scales. Here,
di erent scales are obtained by varying the size of the box Ites. Multiple octaves in-
clude multiple Iters at increasing size. The interest points e localized by conducting
a non-maximum suppression in spatial direction and scale includj an interpolation
in all three dimensions.

For invariance to rotations, it is also assigned a dominant ori¢ation to every interest
point. Therefore, rst order Haar wavelet lters in horizontal and vertical direction
are applied at the interest point and at all neighbors within acertain radial distance.
The responses can again be calculated with the integral imagasd are weighted by
a Gaussian centered at the interest point. The weighted strengtbf the responses in
horizontal and vertical direction are projected at a 2D spaceThe peak of the distri-
bution in this space indicates the dominant orientation. Thé orientation assignment
can also be left out, the resulting approach is called U-SURF.

The computation of the feature descriptor is conducted withiie same Haar wavelets.
Here, a square region consisting of 4x4 subregions is taken inte@ant. The region is
centered around the interest point and orientated along thessigned orientation. For
every sampld in a subregionR, Haar wavelet responses, again weighted by a Gaussian,

are calculated. The responses ir- and y-direction are denoted agih, and d.,. The
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Figure 3.2: Left: discretized second order partial Gaussian deatives in y-direction
and xy-direction. Right: Approximations with box lters[16].

descriptor vector for one subregion is

X X X X _!
YR = Chix ; di;y; jdix]; . Jdi;y]

i2R i2R i2R i2R

As there are 16 subregions containing 4 vector elements, the Infeature descriptor

has 64 dimensions.

3.4 Histograms of Oriented Gradients (HOG)

Within the Histograms of Oriented Gradients (HOG) approach, ndkeypoint detection
is performed, instead the image is split into overlapping csllresulting in a dense
sampling approach. Gradient orientations of all pixels witim a cell are calculated and
a 1-D histogram of gradient orientations is created. The hisggam entries of several
cells composed to a block represents the descriptor. The gratdgin x- and y-direction
are computed by simple centered Iters[1;0;1] and [ 1;0; 1]" without any smoothing.
There are two di erent types of blocks, rectangular grids casisting of rectangular cells
called R-HOG blocks and circular blocks where the cells aredared in a log-polar grid
called C-HOG blocks[18].

Similar to many other descriptors, multi-scale analysis is comdted using a pyramid
and applying a non-maximum suppression. For better invarianc® illumination, a
normalization is performed within a block. HOG gives also thegssibility to use RGB
color information. In this case, the gradients are calculateseparately for each color

channel and the one with the largest norm is selected for the degtion.
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3.5 DAISY

The DAISY descriptor is designed for nding correspondence in de-baseline stereo
image pairs. The descriptor allows for dense matching in an e ent way. Similar to
SIFT, gradient magnitudes and orientations are computed kunot distinct for single
keypoints, they are pre-computed for every pixel in the imageith varying Gaussian-

smoothing and additionally in di erent directions [19].

3.6 Binary Robust Independent Elementary
Features (BRIEF)

In contrast to the vector based feature descriptors described the previous sections,
binary robust independent elementary features (BRIEF) are deribed by a binary
string [20]. This approach allows to use the Hamming distance irestd of theL, norm

which simpli es the matching task dramatically. But also the caenputation of the

feature descriptors in comparison to e.g. SURF is much faster. iBhalgorithm does
not provide an interest point detection. Thus, SURF keypoints g used in the original
paper [20].

For the descriptor, a patchp of sizeS S at the interest point is evaluated. All

samples withinp are Gaussian smoothed pixel intensities. The bit strinfy,, (p) of this

descriptor is the result ofng concatenated binary tests

8
%1 ifp<p®) |
(p;%;¥) = _ -
-0 otherwise

wherex and ¥ are coordinates of sample points. Thus,
Rd 1
fng(P) = 27 (pi%ii¥):
i=1
Smoothing ofp is crucial because this binary tests are very noise sensitive. Thelec-

tion of binary tests is very heuristic. Five di erent approacles were tested by Calonder
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et al.. In the chosen approach, the coordinates and ¥ are both random samples of
an independent and identically distributed Gaussian distribubn with the mean value

at the patch center.

3.7 Oriented FAST and Rotated BRIEF (ORB)

The key components of oriented FAST and rotated BRIEF are alrety stated in the

name. The interest point detector in this approach is based onAST, see sectior 213,
and the descriptor on BRIEF, see section 3.6. Whereby an orientah assignment is
added to the keypoint detector FAST and rotation invariances added to the descriptor

BRIEF [21].

FAST interest points detector The rst step is the detection of FAST points as
keypoint candidates in the image. According to Rublee et al]21], FAST produces
large responses along edges. To overcome this circumstance, aisl@orner measure
is used (see section 2.2). Additionally a scale pyramid is apgliéor performing multi-
scale analysis. Finally, onlyN keypoints with the highest score according to the Harris

corner measure are selected as interest points.

Orientation assignment To assign orientations to the keypoints, the intensity cen-
troid of an image patchp of sizeS S around the interest point is computed. This
is achieved with geometric moments. In the discrete case and msted to p, they are

de ned as follows:

X X
Mpq = xPydp(x;y);
x=1y=1

wherex andy are the coordinates within the image patch.

The centroid is located at
M1o. Mo2

C= ;
Moo Moo
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and the orientation is given by

= atan2(moy; Myo);

whereatan?2 is the quadrant-aware version of arctan.

rBRIEF  The assigned orientation is used to rotate the coordinates oféhsampling-
point pairs % and ¥ for the binary tests of BRIEF. The set of coordinate vectors for

all binary tests is depicted in

A rotation matrix R is constructed out of the orientation and a steered versiod
of the setT is calculated,

T =RT

The resulting descriptors are now more invariant to rotation$ut the discriminability
is signi cantly reduced. According to Rublee et al. [[21], BREF depends on random
orientations of keypoints for good performance. TherefoBRIEF is introduced. It
uses a learning algorithm to search for a subset of binary tests whido have high
variance and a mean value which is as near as possible to 0.5. tRarmore, the tests
should be as uncorrelated as possible. Here, the 256 most suitaldsttare searched
out of all M possible binary tests of sample pairs. Whereby both samples have to
be in di erent subwindows within the image patch to reduce thesize ofM. During
the training, all M tests are conducted for all keypoints of a training set. Then #n
M possible binary tests are ordered by the absolute distance of thenean values to
0.5. Afterwards a greedy search is used to nd the best subsét. The test with the
smallest distance is the rst entry of T,. In the following step, the tests with the next
nearest distances are evaluated. If the absolute correlatioo the tests within T, is
smaller than a threshold, they are also added td@,. This step is repeated, using a

higher threshold, until 256 tests are il .
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The composing of the descriptor is performed in the same way asBRIEF using the

binary tests of T,

3.8 Binary Robust Invariant Scalable Keypoints

(BRISK)

Binary robust invariant scalable keypoints is also a combinatn of locating interest
points and creating a binary string as a descriptor. Similar tdORB, the resulting

features aim to be invariant to rotation and scale[[22].

Interest points detector Keypoints are searched in scale-space using the AGAST
approach, see section 2.4. Here, the circle around the nucleossists of 16 pixels and
at least 9 consecutive pixels have to be classi ed ast similar to be considered as a
corner. For multi-scale analysis, a scale-space pyramid consigtiaf several octaves is
used. The detector is applied on every octave. Afterwards a nonaximum suppression
in scale-space is performed using the FAST score function (sectidf) and additionally,

a quadratic interpolation in space and scale is performed.

Feature Descriptor In contrast to BRIEF (section[3.8), BRISK uses a deterministic
sampling pattern. The samples for the binary tests are orderedh imultiple circles
around the keypoint with di erent radial distance. The sample are illustrated as blue
circles in Figure[3.B. The size of the red dotted circles demst the varying standard
deviation ; of the Gaussian smoothing resulting in sample intensity valudgq; ;).
Samples in the outer circles have further distance to their ighbors. This allows
stronger smoothing as long as pixel information included in #h samples does not
overlap in brightness comparisons.

Out of all samplesN, a setA of all possible sample pairs can be constructed:

n (0]
A= (8;9)2R* R*ji<N ~j<i;8ij 2N
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For the orientation assignment, a set of. long-distance sample pairs is established:

L=f(a;9)2Ajkg dKk> ming

The dominant direction of the keypoint is estimated by
0 1

hy 1 X
=0 “x= - 9(4;9);
hy LI (g2t J
where
q) = ICHIERICHDY
g(e;9)=(g 1) g g

The rotation angle calculated by the quadrant-aware version of arctan like in OB,
= atan2(gy; &);

For building the feature descriptor, a second subset @&f is built restricting the com-

parisons to short-distance pairs:
[0}

n
S= (@9)2A] § 9 < ma

The binary testing

8

21 ifI(g; )< (g
(pie:g) = (a; ) <I(g .J)

=0 otherwise

8 d;q 2S

and the concatenation to a bit string is equally to BRIEF.

3.9 Fast Retina Keypoint (FREAK)

Interest point detection No individual algorithm is provided by the Fast Retina
Keypoint (FREAK) approach for the interest point detection. Instead, the multiple
scale realization of the AGAST corner detector implemented iBRISK (section[3.8) is

used for the performance evaluatiori [23].
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Figure 3.3: BRISK sampling pattern[22]: Blue circles depictample locations for
binary tests; size of red circles correspond to standard deviati@f Gaussian smooth-
ing.
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Feature descriptor The sampling pattern of the FREAK feature descriptor is in-
spired by the human retina[[23]. Many sampling points are accwtated near the the
keypoint and the density of points drops exponentially withncreasing radial distance.
The size of the Gaussian-smoothing kernel changes also exporadipti The sampling
points denoted by black dots and the Gaussian smoothing indied by red circles are
shown in Figure[3.4. In contrast to BRISK, where the sampling pe are chosen de-
pending on their relative distance, FREAK selects the best pairsased upon a learning
algorithm similar to ORB. Therefore, keypoints from a set of irages are extracted and
the result of every possible binary comparison of all sample paints saved. The al-
gorithm for computing the most discriminative subset of sample ocoparisons for the
binary descriptor is the same as in ORB which is explained at thend of the section
[B4. Interestingly, coarse-to- ne sample pairs are automatatly preferred by the learn-
ing algorithm in the original paper [23]. The resulting binay string is restricted to 512
bits which are clustered in four substrings with 128 bit length dptimized for Single
Instruction, Multiple Data (SIMD) instructions on Intel proc essors). The matching
task is speeded up by comparing the substrings of the rst, most disorinative cluster
and the additional clusters are only taken into account if thelistance for each is below

a threshold. This approach is very similar to the saccadic seardf the human eyes.

Orientation assignment The only di erence of the orientation assignment com-
pared to BRISK (section[3:B) is the selection of sample pairs. Hesample pairs with

the same Gaussian-smoothing form the set for the calculation ofdlorientation.

3.10 Comparison of the Descriptors

Currently the SIFT keypoint detector and descriptor is implenented and used within
the ISM implementation. A very similar algorithm is given by the SURF descriptor.
It has a lower computational complexity and comparable dettion rates could be

assumed. HOG is a dense approach. The number of extracted desa@iptwill be very
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Figure 3.4: FREAK sampling pattern [23].
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high by using a dense approach. This makes it quite complex totagrate HOG in
an codebook-based algorithm like the Implicit Shape Model. Ew descriptor has to
be matched with the codebook and out of all matches, object hgphesis have to be
computed. Additionally, the huge amount of information hago be represented within
a codebook. To avoid a blow up of the codebook, only a small paot the descriptors
can be present in the codebook. We decided to concentrate omdnly descriptors
within this work. Binary descriptors are a quite di erent approach to SIFT. They have
very low computational costs for descriptor computation and ritching. BRIEF and
its successor are invariant to every transformation on the imageatch which does not
change the sign of the gradients between the pixels. Thus, theyeavery suitable for
challenging illumination conditions. So it is worth to invesigate in this new approach
of feature descriptors.

The state-of-the-art binary descriptors use keypoint detects based on the segment
test criterion. The performance of the di erent approaches shuld be very similar,
the main di erence is about ordering the comparisons with theaucleus resulting in
a varying speed of the decision. The most prominent approach i&AET. The fastest
approach is AGAST which by design doesn't have any disadvantagagainst FAST.
The ORB paper states that FAST and consequently AGAST too, has lge responses
along edges. Thus, probably further e ort has to be put in impreing the keypoint

detection. An alternative would be to use the well proven SURF kg@oint detector.
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Chapter 4

Implicit Shape Model (ISM)

The Implicit Shape Model is a machine learning algorithm foobject detection. There-
fore, a codebook is generated in the learning phase and usedsbreate locations and
scales of objects in the detection phase. The whole approactb&sed on the General-
ized Hough Transform|[[24]. Codebook entries that match with ¢vacted features vote

for object center locations and scalé][4].

4.1 Training Phase

A set of sample images is used for training. The rst step of the algthm is to detect

interest points within the area of the objects that should be dected and to compute
the correspondent feature descriptors. Therefore, a segmemtex of the objects from
the background has to be available as the ground truth. Afterards, the features are
clustered according to the distance between the resulting vecs of the feature descrip-
tors (in the case of a binary descriptors, the Hamming distance eten the binary
strings is considered). One method which can be uses here is Kavg clustering. For
every cluster, a codebook entry is created. The entry consistsabdescriptor represent-
ing the cluster center and the scale and the relative position tihe center of the object
of every interest point within the cluster. Figure[4.1 shows anxemplary sample image

with the corresponding object segmentation and the generatiof the codebook.
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Figure 4.1: The training phase of the ISM[4]

4.2 Detection Phase

Learned objects can now be be detected and recognized witlain image by using the
trained codebook. The rst step is again to detect interest poits and compute the
corresponding descriptors in the input image in the same way asthe training phase.
Then the computed feature descriptors are compared with thewf the codebook en-
tries. A matching is found if the the distance of the descriptorss below a certain
threshold. Afterwards, a probabilistic voting for the object cater and scale is con-
ducted. For each matched codebook entry, every stored scaledgposition votes for
the object center and scale. An object is assumed at maxima in theting space if
the maxima is above a pre-de ned threshold, the hypothesis thshold. The interest
points of the codebook which are contributing to a maxima aresed for backprojecting
the object within the image. This leads to a segmentation whera decision for each
pixel is performed whether it belongs to the object or not. Tis process is visualized
in Figure [4.2. This backprojection is not implemented witha this project, because a

pixel-wise segmentation is not used. Bounding boxes are used ezd.

4.3 Max Margin Hough Transform

The Max Margin Hough Transform is an discriminative extension tdhe generative
Implicit Shape Model and it is implemented within this project. Within the standard

ISM, features are extracted only within the area of the objés to classify at the train-
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Figure 4.2: The detection phase of the ISM 4]

ing phase. Afterwards, it is evaluated how repeatable these feats are. It is not
evaluated how repeatable these features are at the backgrounfo get good detection
performance, it is important to know how repeatable certaifieatures are in general to
avoid getting strong responses also in the background. Max MangiHough Transform
addresses this problem. Therefore, a second training procedus performed. Hereby,
a standard ISM detection process is simulated on training datand it is evaluated how
often a cluster contributes to a true positive and how often its contributing to a false
positive. A support vector machine (SVM) classi er is used to assigneights to the
clusters. Clusters contributing to true positives get large wghts and clusters voting
often for false positives yield to small weights [25]. Figuie-3.shows the weights on
a car of UIUC cars dataset. Every colored dot represents a featur&he color of the
dots determines the weights of the cluster matched with the deriptor corresponding
to the keypoint. It is comparable to a heat map. Dark blue signés small weights
and dark red depicts large weights. As expected, features inetbbackground get small
weights. Features at the bottom of the car seem to be the most digtinative because

they get the largest weights.
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Figure 4.3: MMHT: colored dots represent weights of featuresdrned by MMHT.

Red dots indicate high weights and blue dots small weights [R%Picture of car is
taken from the UIUC dataset [26]
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Chapter 5

Compact Descriptors for Visual
Search (CDVS)

5.1 Overview

With Compact Descriptors for Visual Search (CDVS), MPEG introdues a new stan-
dard for visual search and for mobile visual search. The projectidresses the issue
of having various platforms for mobile visual search by o erig an interoperable, cross
platform solution [27]. There are two use cases, pairwise matchiand image retrieval
[28]. For pairwise matching, descriptors are extracted from query image and it is
evaluated if objects or scenes matches with a reference imdige it is depicted in

Figure[®.2. In the case of image retrieval, matches are seardheithin a database[5.8.

One important aspect for mobile devices with very limited badwidth is the compact
representation of the images. The processing pipeline theredas depicted in Figure
E.J. SIFT descriptors are computed for interest points and a sabt of the features are
selected dependent on parameters like the keypoint score, scabrientation and the
distance to the image center. For image retrieval, a global geriptor, representing the
whole image, is generated by aggregating information of thecal SIFT features. This

global descriptor is called Scalable Compressed Fisher Vect®QFV) [29]. The local
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Figure 5.2: CDVS: Pairwise matching architecture [28]

descriptors and the coordinates are compressed as it is depicia Figure 5.1. The
global descriptor is an binary stream which can be matched vefgst using Hamming
distance with a database. For a more accurate matching and foapwise matching, the

local descriptors are used. A detailed description of the whopgpeline can be found

in [29] and [28].

The Dierence of Gaussian Algorithm (DoG), explained in sectior?.5, is protected
by an exclusive patent([30] which cannot be part of the MPEG CDVS ahdard [31].
Therefore di erent approaches are proposed to replace DoGthin the CDVS project
with an algorithm providing quite similar results without harming any patents. Two

of them are presented in the next two sections.
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5.2 Block-based Frequency Domain Laplace of Gaus-

sian (BFL0G)

The DoG detector is mainly protected by the patent text oflocating pixel amplitude
extrema in a plurality of di erence images and the method of gerating these said
di erence images(in claim 1 of this patent) [31]. The Block-based Frequency Doain
Laplace of Gaussian (BFL0oG) detector does not generate such eience images and, as
already stated in sectioriZl5, the di erence-of-Gaussian furioh is an approximation
of the Laplacian of Gaussian (LoG) function used in this algofitm. The image is
decomposed into blocks and a for every block LoG lters are cducted in the frequency
domain. The responses are re-transformed to the spatial domaindathe blocks are
recomposed. Now, scale-space extrema can be detected and eterhas interest points
like in SIFT [32]. The generation of the scale-space remainsetisame like in SIFT but

the algorithm for nding the interest points within the scale space is di erent.
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Figure 5.4: Block-based Frequency Domain Laplace of GaussidF(LoG) interest
point detection pipeline [33]

5.3 Advanced Low-order Polynomial (ALP)

The Advanced Low-order Polynomial (ALP) detector is very distict from prior art
algorithms. It claims to be faster than the BFLoG detector usedn the reference soft-
ware version TM7 and to have a good accuracy [33]. The scale spacapproximated
by low-degree polynomials for each pixelk(y) along scale . The extreme points of
of every pixel coordinate X;y) are candidates for interest points. Candidates are
discarded if at least one of the eight neighboring pixels withithe same octave has
a bigger absolute value. They are also discarded if their absaduvalues are below a
threshold and they have to ful ll further criteria regarding the curvature. The nal
interest points are obtained after performing a re nement othe coordinates for every

remaining candidate. The processing pipeline is illustratech iFigure [5.5
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Chapter 6

Implementation Detalils

6.1 Implicit Shape Model with Binary Descriptors

The distance metric for binary descriptors is the Hamming distaze. This is one big
advantage over oating point vector based descriptors. On the BU, Hamming dis-
tance can be computed much faster than the euclidean distanc&he existing ISM

implementation is based on OpenCV. But OpenCV_[34] does not supg clustering

with Hamming distance. We have rewritten the whole ISM trainiig using Matlab [35]
and mexopencv[[36]. mexopencv is an C++ interface which gisahe ability to use
the OpenCV library in Matlab. So we get the exibility of Matl ab and the speed
of OpenCV. We have implemented a resource-e cienk-means clustering algorithm
which also uses the mexopencyv interface to compute the Hammingstdnce and the
cluster centroids. Additionally, the SSE3-based Hamming distae implementation was
adapted from BRISK [37] which speed-ups the matching about do times compared

to the OpenCV implementation.

Upright ORB (UORB) The binary descriptor used within the evaluation is based
on the OpenCV implementation of ORB. ORB, like BRISK or FREAK has an build
in algorithm to reduce the rotation variance. The objects @sses examined within this

work are assumed to appear in an upright position within the imag Hence, we do
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not need a rotation invariant descriptor. To avoid a loss of irfrmation caused by such
invariance algorithms, we do not use them. Therefore, we set tbeientation parameter
of every keypoint to zero indicating that the dominant orietation is upright. In this

case the pattern of binary test is left unchanged. This operath is also performed for

the SIFT descriptor.

Color The keypoints and binary descriptors can be computed for eweRGB color
channel or only for gray scale values. The codebook generatiand the descriptor
matching is independent from the present channel the descrgtwas extracted. In the
evaluation, color is used for all binary descriptors. The imphaentation based on SIFT

does not use color information.

6.2 Thresholded Absolute Dierences of Intensity

Pairs (TADIP)

A feature descriptor extracts information from a feature regesented by pixel intensity
values within an image patchp. To get good detection performance, the extracted
information must be dissimilar in comparison to information extacted from a dissimilar
feature and the information has to be similar for similar feattes. Additionally, the
extracted information has to be invariant to certain transfemations of the feature. The
needs for invariance highly depends on the detection task. iBtould include invariance
to illumination changes, scale, rotation and so on. State of thart binary descriptors
like Brief (section3.6), ORB (section317), BRISK (sectioi 3)8r FREAK (section 3.9)
are quite robust to transformations caused by illuminations. Ifact, they are invariant
to every transformation which does not change the sign of the agtients computed
between two pixels withinp. Of course this comes at the cost that the amount of
extracted information is very limited. It is restricted to information about the sign
of gradients. For dierent features you may need to extract derent information.

Dalal et al. stated: For humans, the wide range of clothing and background colors
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presumably makes the signs of contrasts uninformative. Hewer note that including
sign information does help substantially in some other objerecognition tasks, e.g.
cars, motorbikes[18]. We can put this one step further. This may not be constraed

to whole objects, it is also possible that di erent features witin the same object need
to be described by di erent information to get a description wich is distinguishable
from other features and the background. Discriminative apmaches give the possibility

to determine or weight di erent information extracted by varying descriptors.

In contrast to state of the art binary descriptors, we developed &inary descriptor
which extracts gradient magnitude information only, beingndependent from the sign.
This descriptor is called Thresholded Absolute Di erences of tansity Pairs (TADIP).
Similarly to state of the art binary descriptors, it compares tw pixel intensity values
within an image patchp. In fact, the same pattern is used as in BRISK, see Figure 8.3
for details. In the case of TADIP, the binary tests on the image patchp are de ned

as

8
1 px) p)i>tm
(p’X’y) - > . )
=0 jp(x)  p(y)  tm

This notation is similar to the notation in BRIEF [20]. x andy are pixel coordinates,
p(x) is the pixel intensity in a smoothed version ofp. The applied smoothing is
similar to the one in ORB [21]. The threshold, is equal to the mean of the absolute

di erences of allM =512 tests

X N
tm 1= ip(xi) ply)i:

i=1

The results of the tests are aggregated to a bin string represemgi the descriptor

¥
fu) = 2" ' (p;xi;y))

i=1

The descriptor is invariant to linear transformationsa p(x) + ¢; (a > 0). A linear
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transformation a ects the thresholdt,, which changes to

"M@ px)+ 9 (a p(y)+ O
P

t 1
m;l M
a w1 IP(Xi)  p(yi)]
a

—

m

But it does not a ect the results of the binary tests
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Many keypoints are at the border between the object and backgund because it is
very certain to have big gradients there. These are also verysdriminative because
they are around the object and therefore include the informien about the shape of
the object. Figure[6.1 shows two images from di erent datasetsith the ve keypoints
(+ the patches around them) having the biggest corner score. ttan be seen that the
keypoints with the highest score are all between object and Hdaground for the person
in the left image. Figure[6.2 shows two times an Gaussian smoothiatage patch from
a keypoint of the right foot of the person in Figuré 6J1. Sub gte[6.2& shows the results
for 20 random binary tests from the TADIP descriptor. The lines letween two points
depicts the two sampleg(x) and p(y) for which the test is conducted. A green line
statesjp(x) p(y)j tm and ared onegjp(x) p(y)j >t the test Sub gure [6.2D
shows the results for 20 random binary tests from the ORB descript In this case,
p(x) is the sample nearer to the left top corner of the patch compead top(y). The line
between the samples is greenpf(x) > p(y) and red if p(x) p(y). So there are many
tests lying completely in the background. The test whether onpixel intensity within

the background is bigger than another pixel intensity also witin the background is
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(a) Image from TUD-Pedestrians dataset (b) Image from Hornberg tunnel se-
[38] guence dataset

Figure 6.1: Keypoints on training images

no information which describes the object. But this is the irdrmation extracted by
state of the art binary descriptors like ORB. This kind of tests & very sensitive to
background clutter and noise. TADIP instead, sets small pixel imnsity di erences to
zero and big di erences to one. If the biggest pixel intensity ickerences are between
the pixels from the object and pixels from the background, TADP sets tests between
samples within the same class (object { object, background { blground) to zero and
tests between samples from di erent classes to one (object { bapbund). The idea is

to describe the shape of the object that way.

6.3 Scale Prior Estimation

Prior knowledge is information about a problem which is knoweforehand [[39]. It
helps to reduce the uncertainty within the object classi caton. Here, it is assumed
that the scale of objects is within some range. This means, thegtability that the
scale is outside this range is estimated as zero. The scale of otgerojected to the
pixel plane of an image or video depend on real world sizes oktbbjects and their
distance to the camera. It also depends on the focal length ofehens. So there have

to be known many parameters about the recorded scene which aften not available.
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Figure 6.2: 20 random binary test results from binary descripts
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We present a statistical approach for estimating scale ranges faject classes at certain
positions within the image. This approach is for image or videsequences recorded
from a stationary camera with consistent intrinsic and extrinsiccamera parameters
(details about camera parameters can be found hefe[40]). diefore, a representative
set of captured objects of the respective class for all possiblgeiti location is needed
to create the statistics. In the following, it is called the traning set and the objects
are called occurrences. The object height is considered as #tale (the same approach
can be followed for estimating the width or the aspect ratio) siitar to the ISM imple-
mentation. A minimum and a maximum scale map de nes the scale mges. Both scale
maps have the same number of columns and rows like the pixelwnins and pixel rows
of the sequence. Initially, the measured scale of every occunte is stored in both scale
maps at the pixel position of the object center. But only if thee is not already stored
an entry at the scale map position. Otherwise, the scale range getpanded. If the
new value is bigger than the existing value, the value in the m@mum scale map gets
overwritten. If it is smaller, the value in the minimum scale m@a gets overwritten. This
leads to sparse scale maps because it is unlikely that there areurtences at every
pixel coordinate. Figure[6.B shows the sparse scale maps. The cdlar on the right
of every plot determines the scale or in this case the object bht in pixels. Positions
with no occurrences are set to zero in this graphical represatibn. A dense represen-
tation is accomplished by performing a linear interpolatiorfor every empty position
from the nearest neighbors as sketched in Figure5.4. Finally, Gaussian smoothing
is performed on the dense scale maps. The smoothed version is shawRigure [6.5.
This approach has very little e ort and is quite robust if a regesentative training set

is available. So, the advantages are:

Camera parameters must not be known.
Ranges of the real world sizes of the objects must not be known.

Same training sequences as for the object detector can be usédhe object

detector gets trained for the scene).
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The scale maps from Figur€ 615 can be used within the ISM detemti process. Votes
outside the scale range are discarded. Thus, erroneous voteglieg to false positive
detections could be avoided if their scale is di erent from tl estimated scale priors.
To avoid false negatives resulting from objects within the cogct class but which are
smaller or bigger than occurrences of the training set, a tolemce is added to the scale

range (this is already added in the st step for the sparse scale map

6.4 2-D Spatial Voting Space and Weighted Aver-
age Scale

The scale prior estimation of sectiof 613 gives a further abjit The uncertainty about
the scale gets quite low. So the voting spadé can be reduced to a 2-D spatial voting
space and the costly process of nding maxima in 3-D can be avotie We propose
the following algorithm: The ith vote consists of coordinates for the locatior; and y;,
the scales; and a voting weightw;. One 2-D array is used now for the spatial voting
space and a second 2-D array is used for the scale of a hypothesisoaation (x;y).
Votes are accumulated in the 2-D spatial space in the same way ashe 3-D space by
summing up the weights of the votes at their coordinates

X
V(Xy) = W;!

8 Xj=x " yi=y
For the scale, the weighed average is computed. So, the scalewdry vote multiplied
by the weight of the vote is summed up at the location of the vota the second array.

X
W (x;y) = Si W
8 Xi=x " yi=y

After the voting weights and the weighted scales are accumutd, the weighted scale
average at location X;y) can be computed by dividing the weighted scales by the

accumulated weights

S(x;y) = W(x;y)=V(X;y)
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Figure 6.3: Sparse scale maps for the Hornberg dataset (inclugitolerance)
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Figure 6.4. Dense scale maps for the Hornberg dataset (includitajerance)
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Figure 6.5: Dense scale maps for the Hornberg dataset after smanth(including
tolerance)
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Hypotheses are found at maxima in the voting space if they are alma pre-de ned
threshold. The scale of the hypothesis is determined at coordites of the maxima in

a Gaussian smoothed version &.

6.5 Algorithm to Constrain the Set of all Descrip-
tors to Repeatable Descriptors

The repeatability of feature descriptors was already discussedsection 3. For good ob-
ject detection performance, it is indispensable to get repeaile descriptors describing

distinct features. A huge ordered set oN descriptors

0 1
Q;O
D=fdji<N:i 2Ng & = ajl

&M 1

is extracted during the training phase in ISM. For performane reasons, the resulting
codebook can be build only from a relatively small subset of alkteacted descriptors.
The number of votes depends on the number of occurrences ar texecution time
of the hypothesis computation highly depends on the number btes. The following
algorithm is used to constrain the number of descriptors to the ast repeatable de-
scriptors. Additionally to the descriptors, a set of correspondm vectors including the

o set of the objects center §;;y;) and scale §;) is stored in the same order
0 1

Xi
L="f5ji<N;i 2Ng;1‘i:%yi§:

Si

Whereas the o set vectors are scale normalized. Thereby, o sgéctors are similar for
features located at the same relative position within the ob@ independent from the

scale at which the object was recorded. Thus, the repeatabylibf feature descriptors
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Dcomp

M 1
e Oobject center

Figure 6.6: Block-based descriptor repeatability computatn: Every feature descrip-
tor with a corresponding o set vector located within the blue tbock Dy IS COM-
pared to every descriptor with a maximal distance of in x and y direction.

can be computed dependent from the o set vector. Here, featwgavith a corresponding
spatial distance belowr are seen as similar located within the object. This approach
gives an additional advantage concerning the computatiohaomplexity. The repeata-
bility has to be computed only between descriptors within a ¢tain spatial distance.
Therefore, the feature descriptorsf; are segmented according to their spatial occur-
rencel;. More accurate, they are partitioned into blockD . Figure 6.6 shows this
approach graphically. For everyDpjo, a second subseDmp is generated including
all descriptors of features located withirDy .« and all descriptors of features located
around a rectangle within a distance in x- or y-direction from Dy.cx. The algorithm
is described by the procedure BlockBasedDescriptorRepeatiigiwhich calls the pro-
cedure DistWeightedLocDependentDescFreq for eveByock-
DistWeightedLocDependentDescFreq estimates the repeatatyil of every descriptor
extracted within the training phase. The setF determines the estimated repeatability
for every descriptor. Everyd; with a value f; above a threshold is seen as a repeatable

descriptor and used in the clustering process.
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Procedure BlockBasedDescriptorRepeatabilityD L ,t,r,bs)

Data : Set of all descriptor vectors D), Set of all relative locations ()

Result : Set of weighted frequenciesH), Set of all descriptor vectors ordered liké

(Dg), Set of all relative locations ordered likeF (Lg)

F;De;Lg = fg;

for m = mingy, : bs: max, do

end

for n = mingy : bs: max, do

Lok := flij(n Xi<n+b99* (M y<m+bgy"T2Lg;

Leomp :=flij(n r Xp<n+bs+r)?(m r yi<m+bs+r)"T2Lg;
Dpock :=f@ij(n Xi<n+byg™r(m yi<m+b9”"d2Dg;

Deomp :=fdij(n r Xi<n+bs+r)"(m yi r<m+bs+r)*d 2Dg;
Foiock = DistWeightedLocDependentDescFredD piock; D comp; Lbiock; L comp: 1 1);
F = F [ Folock;

Dr = Dr [ Doiock;

Le == Le [ Lbiock;

end
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Procedure DistWeightedLocDependentDescFredfpiock, D comps Lbiocks Lcomp, t, I)

Data : Set of descriptor vectors Dyock), Set of descriptor vectors for comparison
(Dcomp), set of relative locations (pieck), Set of relative locations for
comparison (comp), Matching threshold (), maximum spatial distance )

Result : Weighted frequencies vectorRpjock)

foreach @ 2 Dypiock; T 2 Lpiock; fi 2 Fplock dO

fi :=0;

foreach € 2 Dcomp; A 2 Lcomp dO

e := descriptorDistance(@i; €);

if e <t then
s := spatialDistance(fi; f);
if s<r then
fi=fi+1 (e=p?%
end
end

end

end
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6.6 Dense Sampling

Keypoint-based approaches like SIFT or SURF compute a sparse regentation of
objects or scenes. Descriptors are computed for patches arourgeatable points like
corners only. A dense sampling, in contrast, considers every pio{within some sam-
pling distance). So, a dense sampling covers more informatidman a sparse approach.
But algorithms using a codebook representation of object clasdée the Implicit Shape
Model need to Iter information. The codebook hast to be restdted to discriminative
information. Otherwise, the uncertainty of the object classication increases. Further-
more, bigger codebook sizes make the detection process corapahally more complex
which is accompanied by longer execution times and more mem@onsumption. The
maximum computational complexity is limited in practical gplications. Thus, by us-
ing dense sampling, it is vital to develop algorithms which lehto a compact codebook
created from the big amount of information gathered from theraining data. Fea-
ture detection approaches based on interest points have an arent information Iter
by restricting to repeatable points. The e ort of a dense samplig approach is much

higher.

We have implemented a dense sampling approach for binary deptors. So we avoid
using euclidean distance computation like it is needed in SIFfor matching all of the
descriptors with the codebook. We use the fast Hamming distance phementation
leading to still moderate execution times. We are also using theRB implementation
here. Of course, no keypoint detection is performed but we aresing the OpenCV
keypoint vector to store the dense sample point information. Rats are sampled ac-
cording to a prede ned sampling distance irx- and y-direction. As we are using a
sampling distance of 3 pixels and an image patch size 31 pixelsgtbescriptors are
highly overlapping. It would be bene cial to evaluate if andhow results from binary
test could be reused for overlapping descriptors and possibly evier matching for a
future work. Multiscaling is also performed similar like in ORB An image pyramid is

used with n levels. The original image is subsampled depending on the leldly the
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following formula for the scaling factor:

scale= 1=1:2':

6.7 Further Detalls

Merge Overlapping Hypotheses The use of UORB within the ISM results in
many highly overlapping object hypothesis with close by objecenters and varying
scales. Such kind of occultation can be precluded for most dateseTherefore, these
hypothesis are merged. If two hypothesis are merged dependstha overlapping of
their bounding boxes. The overlapping factor is de ned heresathe intersection area
A; divided by the area of the smaller bounding boXs while the bigger bounding box

is denoted asAy
As\ Ay A

AS AS.

overlap=

Thus, if big parts of a bounding box are surrounded by a bigger bading box, the
corresponding hypothesis are merged. How big this part has to liee de ned by a
threshold the overlap has to exceed.

The merging process works as follows. An object hypothesis is dédsed by the x- and
y-coordinate of the center point, the scals and the hypothesis con dence score. A

merge hypothesidh,, = fXm;Ym;Sm; CGng results from the two overlapping hypothesis

ha = fXp; Yo, Sb; G and hy = fXp; Yo, Sp; C9

_C Xat G Xp
Xm_
Cat G
:Ca ya+Cb Yo
Ym BT
_CG Sat G S
Sm——
Gt G

Cn = G+ G
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Image Padding  The ORB implementation within OpenCV de nes anedgeThreshold
parameter [41]. This parameter de nes the minimum distancef &eypoints to an image
border. This is needed because the image patch for the desoniparound the keypoint
must be entirely located within the image. No keypoints are lated for an even bigger
part of the image if the image gets subsampled for multiscale dpsis. For datasets
like the Hornberg Tunnel sequence the biggest objects are ne&etbottom border of
the image. Thus, many features get evident at lower scales buarc not be captured
because of the missing keypoints near the border of the image. €rbfore, we are using

the copyMakeBorderfunction [42] of OpenCV to pad the images.
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Chapter 7

Evaluation

7.1 Performance Evaluation Framework

For a visual evaluation of the results, the ISM detection softwar outputs the input
images with bounding boxes at the positions of object hypotsis and a heat map
showing the voting space in 2-D independent from the scale. Fordaeper evaluation,
XML- les in the VIPER-GT [43] format are extracted. These include information
for every object hypothesis consisting of the bounding box , y coordinate, width,
height and the con dence score. The detection performanceawvation framework is
implemented in Matlab [35] using the VIPER-GT XML- les. The contributing parts

are introduced in the following paragraphs.

Detection Tolerance The detection tolerance determines how much the bounding
boxes of the ground truth and the detection hypothesis must ovap to label it as a
match, a true positive. In this work, the same criteria is used a# the original ISM
paper [4]. It depends on the center coordinates of the hypahis §; y; s) and the ground
truth objects center coordinates X ;y ;s ) and bounding box size \idth; height). x
and y depict the spatial position ands the scale. A match is present if

X x iy y° o isss 4

(0:25 width)2 © (0:25 height? = 028
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Furthermore, only one hypothesis per ground truth object isaunted as a match. Addi-
tional hypothesis ful lling this equation and not matching aher objects are considered

as false positives.

Confusion matrix The confusion matrix is calculated using the Hungarian method
[44]. Therefore, it is assumed that there are two sets, in this casiee hypothesisH
and the ground truth objects G. Additionally, the matching costs have to be known
for every hypothesis compared to every ground truth object. Afe Hungarian method
minimizes the matching cost then. How matches are de ned is elgined in the para-
graph about detection tolerance 7.1. The cost of a match is set zero. The cost of
not matching is set to in nity. This makes the minimization of the matching costs and
computation of the confusion matrix quite simple. The set of mahes is de ned asvl .
The elements of the confusion matrix are calculated by the folving formulas (here,
jX] is the cardinality of the setX):

true positives: jTPj = M|
false positives:jFPj = jJHj ] M|

false negativesjFNj = jG] | M|

Precision{Recall Curves The con dence scores;, determines how con dent the
algorithm is that a hypothesis is a correct detection. Withinthe ISM, the sum of
weighted votes contributing to a hypothesis determines theoa dence score. Many
votes with large weights lead to a high con dence. A maximunmithe voting space is
considered as an object hypothesis only if the con dence scoseébigger than a threshold
t.. Thus, the value oft. a ects directly the number of hypothesisjH j and consequently
recall and precision.

Precision is the ratio between the number of correct labeled pgthesis and all positive
labeled instances

iTPj _ jTPj

precision = JHJ = jTPj T jFPj:
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Recall is the ratio between the number of correct labeled hgthesis and all ground

truth objects
iTPj _ jTPj

recall = iG] = jTPj+jFNj:

Curves are generated by adjusting. and plotting the resulting recall and precision
values. If the detector works properly, a small, value leads to a high recall and a big
t. value in contrast leads to a high precision. So, precision getgyher and recall gets
smaller by increasingt.. In the literature, like in [4], 1  precision is plotted on the
x-axis andrecall is plotted on the y-axis to get the best results on the top left of the
plot.

The maximum of both recall and precision is one. So the- and y-axis are restricted
from zero to one. To get a meaningful numerical measure out dfi$, the area under the
curve A, is approximated using thetrapz function of Matlab [35]. trapz implements
a trapezoidal numerical integration. A perfect performaneis achieved if precision and
recall are both one. In this casé\,, = 1. Otherwise, the area is smaller than one.
Thus, the biggerA,,, the better the detection performance. An alternative numecal
measure would be the equal error rate (EER). This is the value athich precision and
recall are equal. But this is only a measure for a single con dee threshold value and

does not consider the shape of the curves. For that reason, it istnesed here.

7.2 Results on Project Data - Hornberg Tunnel Se-

quence

7.2.1 Overview

Datasets The Hornberg tunnel dataset is an image sequence captured by atsta
surveillance camera in front of a tunnel at a resolution of 32@40 pixel. It shows a
static street scene with cars, motorbikes and trucks coming frothe tunnel or driving

into the tunnel. All of the images contain at least one foregroud object annotated
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as vehicle with ground truth bounding box information. As we ant to distinguish
between the object classes, a subset of the dataset was generatdti wnages having
at least one car present. Figure 7.1 shows eight samples of thigadeet. Additionally,
the bounding boxes are drawn in. Within the set, all non-car amtations were removed
manually. E.g. the annotation of the truck in the third image n the upper row. This
results in 219 images with 305 cars. We refer to this dataset asethornberg simple
datasetfor the evaluation because it includes almost only cars. This sefs also used
by the preceding work [5]. Getting quite good results on thisataset, we decided to
extent the set with 146 images containing no cars but many triks and motorbikes. We
call this the Hornberg comprehensive dataseThis results in a more realistic scenario
and the big amount of non-cars objects leads to additional alenges for the detection

algorithms. Samples of the additional images are shown in Figu7.2.

Figure 7.1: 8 sample images from the Hornberg simple dataset witlounding box
annotations

Region of Interest  The Implicit Shape Model does not perform well for objects at
small resolutions. The number of keypoints gets very low for smalbject sizes. Less
keypoints result in less votes. No representative hypothesis caa breated with only a
few votes. In the Hornberg sequence, the cars at small scales amated in the upper

part of the image. Therefore, a region of interest (ROI) was deed. This is depicted
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Figure 7.2: 8 sample images which are only in the Hornberg corepensive dataset

in Figure 7.3. The complete area below the red line compose®tROIl. Objects with

the object center located above the red line are ignored in ¢hevaluation.

Figure 7.3: Region of interest for the Hornberg dataset (area logv red line).

Performance Analysis For the performance analysis, we did a 4-fold cross valida-
tion (also for the scale maps). Therefore, the dataset is split iatfour subsets of equal
size. The images were randomly assigned to a subset. This was alyedone for the
Hornberg simple dataseand we randomly added the additional images of thidornberg
comprehensive datasdb the subsets using theandsamplefunction from Matlab. The

detection is performed on every subset within the sequence usitigerent codebooks.
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The corresponding codebook of a subset is generated out of artirag on the respective
other three subsets. This ensures that that the training images@ separated from the

images used in the detection.

All the plots in the next section contain precision{recall cures with a legend depicting
the used parameter. The tables show numerical results. If an algbm was used is
indicated by using the signs for algorithm was not used andX for algorithm was
used for the test. The merge column depicts if the merging of olepping detections
was performed. The scale priors column depicts if these were dised padding column
depicts if the image were padded for training and detectionThe last column is the
numerical measure of the area under the precision{recall cenA,,;,. Some tables
also includes execution times. The feature extraction time ithe duration keypoint
detection and the computation of the feature descriptors hataken. The maxima
nder timing includes the matching of descriptors with the calebook, the extraction
of the votes and the process of nding maxima within the votingspace. The detection
time is the time the whole detection takes without reading te codebook and loading
the image from the harddrive. All timings are mean values avaged over all images of
the dataset.

All tests with UORB were done using a codebook with 250 clusters arad matching
threshold of 70. The descriptor consists of 512 bins. For the teststhv SIFT, a
codebook with 1200 clusters was used and a descriptor matchirgeshold of 280.

7.2.2 Evaluation Results

Implicit Shape Model using SIFT descriptor The preceding work [5] reported
an equal error rate (EER) on the Hornberg simple dataset of 95.5% the best case.
The best EER achieved in this work with similar settings was about®% as depicted
by the red line in Figure 7.4. This is partly caused by xing an &or in the evaluation
framework. Hypothesis were not counted as true positives if thground truth objects

were located inside the region of interest and the hypothesistside the ROI even if the
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Dataset Descriptor Weights Scale Priors A pir

simple SIFT MMHT 0:9990
simple SIFT MMHT X 0:9996
comprehensive SIFT MMHT 0:9949
comprehensive SIFT MMHT X 0:9984

Table 7.1: Results on both Hornberg dataset using SIFT descriptor

overlapping of the bounding boxes was within the detectioroterance. And, hypothesis
were counted as false positives if the hypothesis was locatedide the ROl and ground
truth annotation outside the ROI also even if the overlapping bthe bounding boxes

was within the detection tolerance.

By conducting the detection also on the 146 additional no-carimages of the compre-
hensive dataset the detection performance gets worse but notadnatically. This can
be seen in the plot of Figure 7.4 by comparing the red curve ant& blue curve and
by comparing the green curve and the magenta curve. The ressiitan also be followed
up at the A, column within the Table 7.1. But the di erences of the areas nder the
precision{recall curves are rather small because the overakteéction results for this

dataset are quite good.

Image Padding  The tests resulting in the red, green, blue and cyan curve withi
the Figures 7.5 and 7.6 were made by using the same codebook. thertest resulting
in the magenta line, image padding was used and the images we only padded
for the detection, but also for the training. So the used codelod& is di erent to the
codebook for the other tests within the plot but all remainingparameters were kept
equal. For the simple dataset (see Figure 7.5) no superior can lexognized. But for
the comprehensive dataset (see Figure 7.6), a signi cant incieain performance can
be seen. This indicates that the greater number of keypointa the outer region of the

image reduces the uncertainty of the object detection. Tabl7.3 gives the numbers.



7.2. RESULTS ON PROJECT DATA - HORNBERG TUNNEL SEQUENCE 63

1 —
0:95
0:9
_0:85
c
(8]
o
0:8
075 —+— SIFT(simple dataset, no priors)
SIFT(simple dataset, scale priors)
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—+— SIFT(comprehensive dataset, scale priors)
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0 005 o1 015 02 0:25 03 0:35

1-precision

Figure 7.4: Results on both Hornberg dataset using SIFT descripto
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The area under the precision{recall curvéd ., increase from @687 to 09774. TheA,,
value in Table 7.2 for the simple dataset is even bigger withoygadding. But this is
caused by the fact that one additional false negative is evidewhich is likely to be an

artifact caused by using a di erent codebook.

Merge of Overlapping Hypothesis The merge of overlapping detection improves
the detection performance on the simple dataset as shown by théué curve com-
pared to the green curve. The dierence is smaller for the comghensive set. This
approach also merges two or more overlapping false positive eleions like explained
in paragraph 6.7. Additionally, the con dence score is summedp and some of the
merged hypothesis maybe will exceed a con dence score threshipl which would not
be exceeded if the their were considered as single hypothesesusTlit would surely be
more bene cial to improve the accurate estimation of the obp locations, especially

the scaling. Then, a merge of overlapping hypothesis would nbe necessary.

Scale Priors  Scale prior estimation within the ISM for static scenes was inbduced
in section 6.3. Figure 7.4 shows signi cant improvements of théetection performance
by using scale priors especially for the comprehensive dataset.hi§ is reasonable
because the additional objects in this set are mainly trucks vith have a bigger real
object size with large homogeneous regions. E.g. the windscredra truck should be

much bigger than the windscreen of a car.

Algorithm to Constrain to Repeatable Descriptors The algorithm to constrain

the number of descriptors to the most repeatable ones beforeetlslustering process is
explained in section 6.5. Figure 7.7 and Table 7.4 for the singpbataset and Figure
7.8 and Table 7.5 for the comprehensive dataset show that hugeprovements in the

detection performance can be made by using this algorithm. €hsame parameters
were used for all three approaches compared within the preasirecall curve (250
clusters and a descriptor matching threshold of 70, use of scalégps, merge overlapping

hypothesis and image padding). For the red curve, no weighteve used, magenta curve
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Descriptor Weights Merge Scale Priors Padding A o

UORB none 0:9358
UORB MMHT 0:9761
UORB MMHT X 0:9830
UORB MMHT X X 0:9929
UORB MMHT X X X 0:9901

Table 7.2: Results on Hornberg simple dataset using UORB descriptor

—+— UORB (no weights)
0:6 UORB (MMHT weights)
—+— UORB (MMHT weights, merge)
0:5 UORB (MMHT weights, merge, scale priors)
—+— UORB (MMHT weights, merge, scale priors, padding)
0:40 01 0:2 0:3 0:4 0.5 0:6 0.7

1-precision

Figure 7.5: Results on Hornberg simple dataset using UORB descripto
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Descriptor Weights Merge Scale Priors Padding A o

UORB none 0:9123
UORB MMHT 0:9501
UORB MMHT X 0:9566
UORB MMHT X X 0:9687
UORB MMHT X X X 0:9774

Table 7.3: Results on Hornberg comprehensive dataset using UORBsdeptor

—+— UORB (no weights)
0:6 UORB (MMHT weights)
—+— UORB (MMHT weights, merge)
0:5 UORB (MMHT weights, merge, scale priors)
—+— UORB (MMHT weights, merge, scale priors, padding)
0:40 01 0.2 03 0.4 05 06 o7 0:8

1-precision

Figure 7.6: Results on Hornberg comprehensive dataset using UORBsdriptor
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Descriptor Weights Merge Scale Priors Padding A oir

UORB none X X X 0:9664

UORB MMHT X X X 0:9901

UORB  Repeatable X X 0:9969
descriptor

Table 7.4: Results on Hornberg simple dataset using UORB descriptand repeat-
able descriptor algorithm

Descriptor Weights Merge Scale Priors Padding A oir

UORB none X X X 0:9494

UORB MMHT X X X 0:9774

UOrRg  Repeatable X X 0:9915
descriptor

Table 7.5: Results on Hornberg comprehensive dataset using UORBsdeptor and
repeatable descriptor algorithm

was generated by using MMHT weights. No weights were used for thepapach which
uses the algorithm from section 6.5 depicted by the green curv&he huge di erent
of the red to the green curve shows also th&-Means clustering is not a very good
approach to get repeatable cluster centers out of all the faats extracted within the
training. There should be further improvements possible by usina more appropriate

clustering algorithm.

2-D Average Scale Maxima Finder For the current 3-D maxima nder, the votes
are not aggregated in a big array, every vote is stored in an gawular vector. So
the processing time and memory consumption depends highly orethumber of votes.
The number of votes depends on the number of keypoints, the deptor matching

thresholds and the size of the codebook. The dependency of the@ution time from

the matching threshold is also stated in [5]. The detection timeéakes about 400{
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0:95

0:9

0:85

0:8

0:75

recall

0.7

0:65

—+— UORB (no weights)
0:6
—+— UORB (MMHT weights)
0:55

UORB (repeatable descriptors)

0:5

0 005 01 0:15 02 0:25 03 0:35 04 0:45 Qa5
1-precision

Figure 7.7: Results on Hornberg simple dataset using UORB descriptand repeat-
able descriptor algorithm
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1-precision

Figure 7.8: Results on Hornberg comprehensive dataset using UORBsdriptor and
repeatable descriptor algorithm
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700 milliseconds using a matching threshold of 250, 1{2 secondsusing a matching
threshold of 300 and over 10 seconds by using a matching threshofd350. There is a
non-linear increase of the detection time if the number of ves increases.

The 2-D average scale maxima nder was introduced in sectiond6.In this approach,
votes are aggregated in a 2-D spatial array. This reduces theemory consumption
especially if many keypoints, high matching thresholds and bigpdebooks are present.
But if the number of votes is low, the individual vote vector @proach is preferable.
This can be seen in Table 7.6. The average processing time of th® Zpatial /
scale averaged approach which uses one big 2-D array takes B.88conds and the
individual vote vector based approach including 3-D mean shimode estimation takes
only 0.059 seconds. For a dense approach, it is not even possiblege this individual
vote vector based approach because the memory consumption edsethe maximum
available memory for a 32-Bit executable. By increasing the sgling distance to 5
pixels memory does not exceed but the execution time gets exinely high.

Regarding the detection performance, both approaches givguite similar results as
shown in Figure 7.9. But note, scale priors were used which leattsa much lower
variance within the scale dimension. The scale averaging wouhdbt be appropriate
without prior knowledge about the scales. However, for the testiacluding scale pri-
ors, it works well and sometimes the averaging over all scale esteven reduces the

uncertainty about the scale.

UORB in comparison to SIFT Figure 7.10 compares the performance of the
ISM algorithm by using the SIFT descriptor and the UORB descripto. The detection
performance of UORB is a bit worse compared to SIFT. It is gettigp even more evident
for the comprehensive dataset. This is understandable because tSIFT descriptor,
although more then ten years old, is still state of the art. But he processing speed
by using UORB is about 90% faster as stated in Table 7.6. This gaim iexecution
time gives further possibilities for pre- or post-processing ohé use of higher image

resolutions. The ISM based on the SIFT descriptor has also a very groperformance
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Feature Maxima

Descriptor Maxima Apr  extraction nder Detection
nder ) . time
time time

UORB 3-D MSME 0:9915 0061s 0059s 0121s

uorg  2Dspatidll 9950 ogis 6092s 0154s
scale averaged

Dense  2-Dspatial /' 4559 3045 M17s  0721s
UORB scale averaged

SIFT 3-D MSME 0:9984 0087s 0141s 0228s

Table 7.6: Results on Hornberg comprehensive dataset evalu@tif-D average scale
maxima nder

0:95

0:9

0:85

recall

0:8

0:75

0:7 UORB (repeatable descriptors, 3-D MSME)

—+— UORB (repeatable descriptors, 2-D average scale)

0:65

0 0:05 a1 0:15 02 0:25 a3 0:35
1-precision

Figure 7.9: Results on Hornberg comprehensive dataset evaluafi2-D average scale
maxima nder
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on the small-scale cars above the region of interest. Thus, by pag more e ort in

the processing approach, better detection performance is @qgbable without longer
execution times as by using SIFT. In fact, it was already spent amne e ort by using

all three RGB color channels instead of grayscale values. Therdtion times would be
much shorter by using only grayscale values. The superiority offSI over UORB is also
caused by keypoint detector. DoG keypoints are in average ntumore repeatable than
FAST keypoints. Therefore, much more keypoints are needed t@tggood detection
performance with FAST. DoG detects about 200 { 300 interest pois. For ORB, there
exists a parameter to control the number of keypoints. We have tsthat to 1200.

Thus, 3600 interest points get detected for all three color chaels in total. A second
advantage of DoG is that it searches maxima in the scale-spacedaget therefore very
repeatable descriptors also in the scale dimension. ORB uses a danmage pyramid
and detects keypoints independent from the scale dimension.hi§ also explains the

inaccurate detection of the object scales by using UORB.

Dense sampling  The procedure introduced in section 6.6 was conducted for dsn
sampling. A sampling distance of 3 pixels was chosen with 8 scaleels. In total, there

are 16359 sample points per color channel and per image at a teson of 320x240
pixels. Additionally, the algorithm of section 6.5 was used toanstrain the descriptors
to the most repeatable ones. MMHT weights are also used here. Butettsampling
distance had to be increased to ve pixels because we ran out of mary by using

a sample distance of 3 or 4 pixels for MMHT. Figure 7.11 shows therfimance of
this dense approach. The performance is still worse comparedtt® sparse approach.
Thus, algorithms have to be developed to get more discrimina® information into the

codebook. The execution times to process one image are giverthie Table 7.6. They
are still signi cantly below one second but also almost 6 times sl@wvthan the sparse

approach. Thus, there is no argument for using this dense samgiapproach so far.
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075 SIFT(best results simple dataset)
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1-precision

Figure 7.10: Results on both Hornberg dataset comparing SIFT dlJORB
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Figure 7.11: Results on Hornberg simple dataset evaluating dend®RB
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7.3 Results on Benchmark Data

TUD-Pedestrians Dataset Overview The TUD-Pedestrians dataset [45, 38] con-
sists of a training set and a test set. The test set includes 400 trang images. Four of
them are shown in Figure 7.12. The Figure also includes the plwgse segmentation
masks which are available for every image. Bounding box anmatibns are also available
in a text le. The images within the set are scaled in a way that tle pedestrians have
a height of 200 pixels. The test set includes 250 images at a resioln of 720x576
pixels. There are 311 pedestrians at di erent scales and poseshw the set. Figure
7.13 shows two examples.

For the codebook generation, we use the training set and a haital ipped version
of the training set because all pedestrian move from the right tthe left within the
images. We have also used the pixelwise segmentation masks. Theniray set was

used as it is for the detection.

Figure 7.12: 4 sample images of the TUD-Pedestrians training tdaet with pixelwise
segmentation masks below [38]

TUD-Pedestrian Dataset Results Figure 7.14 shows the precision-recall curves
for the TUD-Pedestrian dataset using the ISM implementation. [pbreported an equal

error rate (EER) of 55.3% using SIFT. We could not entirely reprduce these results
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Figure 7.13: 2 sample images of the TUD-Pedestrians testing da& [38]

and are a bit worse with an EER about 50%. We used a codebook withQ2clusters
and a descriptor matching threshold of 310. Weights were comjgal using MMHT. The
detection performance on this dataset is quite weak. But theecognition of pedestrians
is not that bad also for this dataset. Quite many of the false negiges and false
positives result from a poor detection performance of the olgecenter and scale. So
the overlapping of the ground truth and hypothesis bounding dxes is very often to
poor to count as a true positive. Thus, massive improvements shdube possible using
an appropriate object center and scale veri cation / re nemat approach. UORB failed
completely within this test. The results provided by the TADIP descriptor are clearly
better. Both approaches used MMHT weights for 800 clusters andhaatching threshold
of 70. But further tests are needed to verify the performancd the TADIP descriptor.
It is also needed to evolve if and how the performance of UORB oegbestrian detection

could be improved.
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Figure 7.14: Results on TUD-Pedestrian dataset evaluating SIFTUORB and
TADIP
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Chapter 8

Conclusion and Outlook

We discussed di erent feature descriptors in this work and conogated on binary
descriptors. An additional training was implemented therefa which is able to clus-
ter binary descriptors. Matlab and mexopencv was used to get arexible and fast
training approach. We used an upright version of ORB to evaluatthe performance of
the implemented algorithms on two datasets. Additionally, wadeveloped a complete
new binary descriptor, called TADIP, which extracts gradientmagnitude information
instead of gradient sign information like all state of the art lmary descriptors. The
performance of the new descriptor was evaluated on the TUD-Pestrian dataset. We
could show an reasonable performance on this set, but TADIP has be further veri-
ed and eventually improved in future work. The TUD-Pedestrian dataset shows also
that additional e ort is needed to localize the center and sdea of objects with strong
varying poses more accurate. The bene ts which were achievieg merging overlapping
detections are also a consequence of the sometimes poor obecating.

The results on the Hornberg dataset are already pretty good. As &sult of this, we
extended the dataset with additional images showing non-cabpcts resulting in more
realistic scenario. SIFT still beats the binary descriptors carerning the detection
performance but is about 90% slower compared to UORB even if thaetection is
performed for all three color channels.

One big issue is the clustering of descriptors within the trainm phase. The used
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k-means clustering algorithm is not appropriate for the task o$toring the most dis-
criminative descriptors into the codebook. Big improvemestcan be achieved by using
the introduced algorithm which reduces the number of desctigrs to the most repeat-
able ones before clustering is performed. But there are stilagabilities of further
improving the codebook generation.

Improvements were also achieved by incorporating prior knd&dge about object scales
at di erent positions within the image. For the low-resolution images of Hornberg it
was quite bene cial to pad them to get more keypoints near thanage borders.

It was also tried to compute the binary descriptors on dense sanggl image points.
The results are not very good till now. Improvements for this pproach are also related
to the creation of a discriminative codebook. This is even menmportant for a dense
approach because all sample points are taken into account andtronly repeatable
keypoints. But the implementation by itself is ready to use.

The CDVS project was also taken into account. The ALP detector sees to be quite
promising as a replacement of the DoG detector of SIFT which igrotected by an
exclusive patent. The CDVS software is based on the VLFeat librarf46]. So it will
need a bit of e ort to integrate it into our OpenCV based framewerk.

Beyond the scope of this thesis: The object detection framewonlkeeds to be integrated
into a tracking approach for video sequences. Therefore, theegal of computing and

matching binary descriptors can also be used to process more ireager second.
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